orcid: 0009-0003-8335-3302, ResearcherID: AAB-5130-2021

preprints

M. Hanek, J. Papež, and J. Šístek. Speeding up an unsteady flow simulation by adaptive BDDC and Krylov subspace recycling. Submitted. [ arXiv ]

A. Miraçi, J. Papež, M. Vohralík, and I. Yotov. A-posteriori-steered p-robust multigrid and domain decomposition methods with optimal step-sizes for mixed finite element discretizations of elliptic problems. Submitted. [ HAL preprint ]

P. Vacek, J. Papež, and Z. Strakoš. A posteriori error estimates based on multilevel decompositions with large problems on the coarsest level. Submitted. [ arXiv ]

book chapter

J. Papež. Algebraic error in numerical PDEs and its estimation. in Error Control, Adaptive Discretizations, and Applications, Part 1 (F.Chouly, S.P.A. Bordas, R.Becker, and P.Omnes eds.), Advances in Applied Mechanics, 58:363-413, 2024. [ online preview ,  DOI ]

published papers

J. Papež and P. Tichý. Estimating error norms in CG-like algorithms for least-squares and least-norm problems. Numerical Algorithms, 97:1-28, 2024. [ DOI ]

J. Papež and M. Vohralík. Inexpensive guaranteed and efficient upper bounds on the algebraic error in finite element discretizations. Numerical Algorithms, 89:371–407, 2022. [ DOI ]

G. Meurant, J. Papež, and P. Tichý. Accurate error estimation in CG. Numerical Algorithms, 88:1337–1359, 2021. [ DOI ]

A. Miraçi, J. Papež, and M. Vohralík. Contractive local adaptive smoothing based on Dörfler marking in a-posteriori-steered p-robust multigrid solvers. Comput. Methods Appl. Math., 21(2):445--468, 2021. [ DOI ]

A. Miraçi, J. Papež, and M. Vohralík. A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps. SISC, 2021. SPECIAL SECTION Copper Mountain 2020. [ DOI ]

A. Anciaux-Sedrakian, L. Grigori, Z. Jorti, J. Papež, and S. Yousef. Adaptive solution of linear systems of equations based on a posteriori error estimators. Numerical Algorithms, 84(1):331--364, 2020. [ DOI ]

J. Papež, U. Rüde, M. Vohralík, and B. Wohlmuth. Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach: Recovering mass balance in any situation. Computer Methods in Applied Mechanics and Engineering, 371:113243, 2020. [ DOI ]

A. Miraçi, J. Papež, and M. Vohralík. A Multilevel Algebraic Error Estimator and the Corresponding Iterative Solver with p-Robust Behavior. SINUM, 58(5):2856--2884, 2020. [ DOI ]

J. Papež, L. Grigori, and R. Stompor. Accelerating linear system solvers for time-domain component separation of cosmic microwave background data. Astronomy&Astrophysics, 638:A73, 2020. [ DOI ]

J. Papež, L. Grigori, and R. Stompor. Solving linear equations with messenger-field and conjugate gradient techniques: An application to CMB data analysis. Astronomy&Astrophysics, 620:A59, 2018. [ DOI ]

J. Papež, Z. Strakoš, and M. Vohralík. Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math., 138(3):681--721, Mar 2018. [ DOI ]

J. Papež and Z. Strakoš. On a residual-based a posteriori error estimator for the total error. IMA Journal of Numerical Analysis, 38(3):1164--1184, Sep 2017. [ DOI ]

J. Papež, J. Liesen, and Z. Strakoš. Distribution of the discretization and algebraic error in numerical solution of partial differential equations. Linear Algebra Appl., 449:89--114, 2014. [ DOI ]

PhD thesis

J. Papež. Algebraic Error in Matrix Computations in the Context of Numerical Solution of Partial Differential Equations. PhD thesis, Charles University, Prague, November 2016. [ .pdf ]

talks (selected)