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Abstract: Solution of algebraic problems is an inseparable and usually the most
time-consuming part of numerical solution of PDEs. Algebraic computations
are, in general, not exact, and in many cases it is even principally desirable not
to perform them to a high accuracy. This has consequences that have to be
taken into account in numerical analysis. This thesis investigates in this line
some closely related issues. It focuses, in particular, on spatial distribution of the
errors of different origin across the solution domain, backward error interpretation
of the algebraic error in the context of function approximations, incorporation of
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Abstrakt: Řešeńı algebraických úloh je neoddělitelnou a často také časově nej-
náročněǰśı část́ı procesu numerického řešeńı parciálńıch diferenciálńıch rovnic
(PDR). Algebraické výpočty jsou obecně zat́ıženy chybami, a v mnoha př́ıpadech
je nav́ıc vysoká přesnost algebraických výpočt̊u v kontextu celkového řešeńı dané
úlohy nežádoućı. Numerická analýza muśı umět pracovat s daným faktem a je-
ho d̊usledky. Předložená práce se v daném směru zabývá několika úzce sou-
visej́ıćımi tématy. Jsou to zejména rozložeńı složek chyby r̊uzného p̊uvodu ve
výpočetńı oblasti, interpretace algebraických chyb využ́ıvaj́ıćı tzv. zpětnou chy-
bu, zahrnut́ı algebraických chyb do a posteriorńı analýzy chyb, vliv algebraických
chyb na adaptivitu a konstrukce zastavovaćıch kritéríı pro (předpodmı́něné) alge-
braické řešiče. Dosažeńı pokroku v těchto otázkách předpokládá, dle našeho
názoru, pochopeńı vzájemných vztah̊u mezi jednotlivými fázemi celého procesu
numerického řešeńı PDR, jako jsou např́ıklad diskretizace problému a algebraické
výpočty.

Kĺıčová slova: Numerické řešeńı parciálńıch diferenciálńıch rovnic, algebraická
chyba, rozložeńı d́ılč́ıch složek chyby, a posteriori analýza chyby, adaptivita, zasta-
vovaćı kritéria, předpodmı́něńı.

– v –



– vi –



This thesis encloses my studies at the Faculty of Mathematics and Physics,
Charles University. Many people helped me to overcome all the difficulties and
to make these years fruitful, filled with delight of challenging problems in the
interesting field of numerical analysis. Here I would like to thank them.

My deepest gratitude belongs to my supervisor, Prof. Zdeněk Strakoš, who has
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Finishing the thesis and my studies would not be possible without the support
of my family and friends. Whenever necessary, they encouraged me and helped
me to find a motivation for further work. In other times they provided me with
a distraction and kept my mind (at least partially) away from formulas and
unresolved issues. I would never be where I am without my parents and my
dearest Mirka, without their love and firm faith in me. The last but not least
word of this acknowledgment therefore belongs to them: děkuji.
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1. Introduction

Solution of partial differential equations (PDEs) using the (Galerkin) finite ele-
ment method (FEM) reduces the original mathematical model1

to find u ∈ V : a(u, v) = 〈f, v〉 ∀v ∈ V , (1.1)

where V is a (infinite-dimensional) Hilbert space, V # is its dual consisting of
linear bounded functionals, a(·, ·) : V ×V → R is a bilinear form (throughout the
thesis we further assume that a is bounded and V -elliptic), f ∈ V # is a bounded
linear functional on V , and 〈·, ·〉 : V # × V → R is the duality pairing, to the
discretized problem

to find uh ∈ Vh : a(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh , (1.2)

where the FEM discrete solution uh is restricted to some finite-dimensional func-
tion subspace (discretization subspace) Vh ⊂ V . Given a basis Φ of Vh, the
problem (1.2) gives rise to an algebraic problem

Ax = b (1.3)

that determines the coefficients x of the discrete solution uh with respect to the
discretization basis Φ, uh = Φx. The FEM discretization basis functions have
typically local support. Exact solution of the algebraic system then ensures the
global approximation property of the FEM discrete solution uh.

But in practice we do not solve algebraic problems exactly and only computed
approximations x̂ and ûh, ûh = Φx̂ ∈ Vh, are available. In difficult problems we
even do not want to achieve a negligible algebraic error, which might be too costly
or even out of reach. Then one should ask when to stop the algebraic solver (in
iterative computation), and/or whether the spatial distribution of the algebraic
error uh − ûh in the domain can significantly differ from the spatial distribution
of the discretization error u− uh. There is no a priori evidence that these distri-
butions are to be analogous. From the nature of algebraic solvers, either direct
or iterative, there seems to be no reason for equilibrating the algebraic error over
the domain. Including algebraic error into a posteriori error analysis in numer-
ical solution of PDEs and construction of stopping criteria for iterative solvers
represent challenging problems. The presented thesis deals with several related
questions.

In Chapter 2, which includes the paper Papež et al. [2014] and additional
numerical experiments, we demonstrate that the algebraic error uh − ûh can
indeed significantly dominate the total numerical error u− ûh in some part of the
domain despite the fact that its norm |||uh − ûh||| is small in comparison to the
norm of the discretization error |||u − uh|||. Here ||| · ||| stands for an appropriate,

problem-related norm on V , e.g., the energy norm |||v||| ≡ (a(v, v))1/2.
By the algebraic (forward) error one understands the difference uh − ûh of

the FEM discrete solution and the computed approximation. A standard alge-
braic error analysis methodology is based on the algebraic backward error that

1This is an abstract setting that covers a range of linear elliptic second order boundary value
problems; see, e.g., Málek and Strakoš [2015].
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interprets the inaccuracies in the algebraic solution of (1.3) as a modification
(perturbation) of the data A, b defining (1.3). In Chapter 3 we relate the al-
gebraic backward error with a modification of the original model (1.1) and its
discretization. We interpret the algebraic backward error as transformation of
the discretization basis (elaborating further on Gratton et al. [2013]; Papež et al.
[2014]), and as a modification of the Green’s operator, i.e. the mapping of the
source term f in (1.1) to the exact infinite-dimensional solution u. We further use
the algebraic backward error for estimating the algebraic (forward) error uh− ûh
via the Fréchet derivative of the matrix inversion.

Information about the error in numerical solution of PDEs should be de-
termined from the computed quantities without hidden assumptions or uncom-
putable multiplicative factors. Moreover, any appropriate a posteriori error es-
timator should provide also the information about the local distribution of the
error. Historically, most a posteriori analysis in numerical PDEs focuses on esti-
mating the norm of the discretization error |||u− uh|||, which is crucial for adaptive
finite element schemes that refines discretization in the parts of the domain where
the estimator indicates a large (discretization) error in order to achieve its close-
to-uniform spatial distribution over the domain. However, these estimators are
often derived for the FEM discrete solution uh, i.e., assuming the exact solution of
the corresponding algebraic system (1.3). In Chapter 4 we consider, as an exam-
ple, the so-called residual-based error estimator. In the included paper Papež and
Strakoš [2016] we study the impact of abandoning the assumption on the exact
algebraic solution on the estimator, allowing its evaluation at the presence of the
algebraic error. Then we numerically illustrate the effect of the algebraic error
on the adaptive finite element discretizations based on the local residual-based
error indicators.

Mathematically justified, cheap, and accurate a posteriori error estimator to-
gether with properly set stopping criteria for iterative algebraic solvers are key
ingredients of an efficient PDE numerical solver. They can significantly reduce
the computational cost of the overall solution process preventing oversolving the
algebraic problem while, at the same time, guaranteeing that the iterations are
not stopped prematurely, i.e., that the error of the computed approximation is
below the prescribed tolerance. Paper Papež et al. [2016] included in Chapter 5
presents a methodology for computing upper and lower bounds for both the al-
gebraic and total error norms |||uh − ûh|||, |||u − ûh|||. The derived bounds allow
for estimating the local distribution of the errors over the computational domain.
We also discuss bounds on the norm of the discretization error |||u − uh||| and
their application for constructing stopping criteria balancing the discretization
and algebraic errors.

When solving difficult problems, an algebraic preconditioning, i.e., the trans-
formation of the algebraic system that aims at faster convergence behavior of
the algebraic solver, is an inherent part of any practical solver. Construction of
preconditioners is beyond the scope of the thesis. Following [Málek and Strakoš,
2015, Chapter 8], we show in Chapter 6 that any algebraic preconditioning can
be interpreted as transformation of the discretization basis Φ and of the inner
product in the infinite-dimensional function space V . This links algebraic pre-
conditioning with the so-called operator preconditioning, i.e., the transformation
of the infinite-dimensional problem (1.1). Results in Málek and Strakoš [2015]
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and the experiments presented in Chapter 6 of this thesis demonstrate that dis-
cretization and preconditioning are tightly coupled.

The results, discussions, and numerical experiments of the thesis consider
conforming finite element discretization of linear second-order elliptic (pure dif-
fusion) model problems; in some parts we even restrict ourselves to the Poisson
model problem. The observed phenomena pose questions formulated in Chap-
ter 7 that should be taken into account in numerical PDEs in general. While
the observations on model problems do not prove the significance of the points
in practical problems, one can hardly assume that the observed difficulties dis-
appear. Methodology for numerical solution of PDEs is typically developed on
model problems, then extended and applied to real problems. The extension of
the results, e.g. of Chapter 5, to difficult problems stemming from real-world ap-
plications should be done thoroughly and with a rigorous consideration of possible
assumptions and restrictions.

Bibliography
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J. Papež, J. Liesen, and Z. Strakoš. Distribution of the discretization and algebra-
ic error in numerical solution of partial differential equations. Linear Algebra
Appl., 449:89–114, 2014. ISSN 0024-3795.
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2. Spatial distribution of errors
in PDE test problems

The chapter provides a motivation for studying the algebraic error and, in partic-
ular, its spatial distribution in numerical solution of partial differential equations.
As observed in the paper Papež et al. [2014] that is included in Section 2.1 and in
the additional numerical experiments in Section 2.2, the algebraic error can have
large local components and it can therefore dominate the total error in some parts
of the domain. This demonstrates that the error estimates should provide the
information about the local distribution of the errors because global error mea-
sures or estimates may not provide sufficient information for constructing reliable
stopping criteria in adaptive computations or for iterative algebraic solvers.

The paper Papež et al. [2014] presents also an idea of interpreting the algebraic
error as the modification of the discretization basis (in Section 3). It explains the
observed behavior of the algebraic error using the spectral decomposition of the
problem and the properties of the conjugate gradient method (in Section 4).

2.1 Paper published in Linear Algebra and its

Applications

The section includes the paper Papež et al. [2014] published in Linear Algebra
and its Applications, vol. 449 (2014).
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distribution over the domain. Since the discretized algebraic
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distribution of the discretization and algebraic errors has not
been studied in detail elsewhere.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In numerical solution of partial differential equations, a sufficiently accurate solution
(the meaning depends on the particular problem) of the linear algebraic system arising
from discretization has to be considered. When the finite element method (FEM) is used
for discretization, the system matrix is sparse. The sparsity of the algebraic system matrix
is presented as a fundamental advantage of the FEM. It allows to obtain a numerical
solution when the problem is hard and the discretized linear system is very large. It is
worth, however, to examine some mathematical consequences which do not seem to be
addressed in the FEM literature.

The FEM generates an approximate solution in form of a linear combination of basis
functions with local supports. Each basis function multiplied by the proper coefficient
thus approximates the desired solution only locally. The global approximation property
of the FEM discrete solution is then ensured by solving the linear algebraic system for
the unknown coefficients; the linear algebraic system links the local approximation of
the unknown function in different parts of the domain. If the linear algebraic system is
solved exactly, then all is fine. But in practice we do not solve exactly. In hard problems
we even do not want to achieve a small algebraic error. That might be too costly or even
impossible to get; see, e.g., [7, Sections 1–3], [24, Sections 1 and 6], [33, Section 2.6], the
discussion in [34, pp. 36 and 72], and [38, Section 1]. Then, however, one should naturally
ask whether the spatial distribution of the algebraic error in the domain can significantly
differ from the distribution of the discretization error. There is no a priori evidence that
these distributions are to be analogous. On the contrary, from the nature of algebraic
solvers, either direct or iterative, there seems to be no reason for equilibrating the alge-
braic error over the domain. Numerical results presented in this paper demonstrate that
the algebraic error can indeed significantly dominate the total error in some part of the
domain. To our knowledge, apart from a brief discussion in [26, Sections 5.1 and 5.9.4],
the presented phenomenon has not been studied elsewhere.

In order to avoid misunderstandings, it is worth to point out that the phenomenon
described in this paper is not related to the so-called “smoothing properties” of the con-
jugate gradient (CG) method [23] or to the investigation of smoothing in the multilevel
setting (for such analyses see, e.g., [36] or [41, Chapter 9]). Moreover, it is not due to
the particular iterative solver or due to the specifics of the model problems used in this
paper for illustration. Following the standard methodology used in the numerical PDE
literature for decades (see, e.g., [8,15,19]), we start by illustrating the phenomenon us-
ing the simplest 1D boundary value problem. Furthermore, in order to plot illustrative
figures, we use a small number of discretization nodes. In order to avoid the impression
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that the simplicity or specifics of the 1D model problem diminish the message, we also
present numerical examples with more complicated 2D model problems that illustrate
the same phenomenon.

Several other phenomena, in particular the pollution error (see, e.g., [9,31]) and su-
perconvergence of the discretization error in the internal nodes (see, e.g., [42]) are also
of interest in the investigation of the spatial error distributions. Investigations of such
phenomena are, however, beyond the scope of this paper.

The paper is organized as follows. The 1D model problem and experimental observa-
tions for this problem are described in Section 2. In Section 3 the total error is interpreted
via a modification of the discretization mesh. Section 4 explains the local behavior of
the algebraic error using the spectral analysis and the approximation properties of the
algebraic solver (here the CG method). Section 5 presents some numerical results that
illustrate the presence of the described phenomenon on 2D model problems and adaptive
PDE computations. The paper ends with concluding remarks.

2. 1D model problem

We consider the 1D Poisson boundary value problem

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0, (1)

where f(x) is a given (continuous) function, 0 � x � 1. This model problem is frequently
used in mathematical literature for illustrations of various analytical as well as numerical
phenomena; see, e.g., [15, Section 6.2.2], [19, Section 5.5], [30], [32, Section 3.2.1].

Denoting by H1
0 (Ω) the standard Sobolev space of functions having square integrable

(weak) derivatives in Ω ≡ (0, 1) and vanishing on the end points (in the sense of traces),
the weak formulation of (1) looks for u ∈ H1

0 (Ω) such that

a(u, v) = �(v) for all v ∈ H1
0 (Ω), (2)

where

a(u, v) ≡
1∫

0

u′v′, �(v) ≡
1∫

0

vf.

The bilinear form a(·,·) introduces on H1
0 (Ω) the energy norm

∥∥v′∥∥ = a(v, v)1/2, v ∈ H1
0 (Ω). (3)

We point out that the energy norm is relevant in many applications; see, e.g., [20, Sec-
tion 2.2.1].
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We discretize the problem (2) by the FEM on the uniform mesh with n inner nodes, i.e.
with the mesh size h = 1/(n+1), using the continuous piecewise linear basis functions φj ,
j = 1, . . . , n, satisfying

φj(jh) = 1,

φj(x) = 0, 0 � x � (j − 1)h and (j + 1)h � x � 1.

The discretized problem then looks for uh ∈ Vh ≡ span{φ1, . . . , φn} such that

a(uh, vh) = �(vh) for all vh ∈ Vh. (4)

The finite-dimensional problem (4) can be equivalently formulated as the system of the
linear algebraic equations

Ax = b, (5)

where the stiffness matrix A ∈ Rn×n and the load vector b ∈ Rn are given by

A = [Aij ], Aij = a(φj , φi), (6)

b = [b1, . . . , bn]T , bi = �(φi), i, j = 1, . . . , n. (7)

The solution x = [ξ1, . . . , ξn]T of (5) contains the coefficients of the Galerkin FEM
solution uh of (4) with the respect to the FEM basis φ1, . . . , φn, i.e.

uh =
n∑

j=1
ξjφj . (8)

In the 1D problem (1), the Galerkin FEM solution uh is known to coincide with the
solution u at the nodes of the mesh; see, e.g., [8, Corollary 4.1.1]. Therefore the coefficients
ξj are equal to the values of u in the nodes,

ξj = u(jh), j = 1, . . . , n. (9)

The stiffness matrix A has the tridiagonal form

A = h−1

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎞
⎟⎟⎟⎟⎟⎠

. (10)

The eigenvalues λi and eigenvectors yi = [η1i, . . . , ηni]T of A, i = 1, . . . , n, are known
analytically (for details and their relationship to the eigenvalues and eigenfunctions of
the continuous Laplace operator see, e.g., [10]),
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λi = 4h−1 sin2
(

iπ

2(n + 1)

)
, (11)

ηji =
√

2
n + 1 sin

(
jiπ

n + 1

)
, j = 1, . . . , n. (12)

The approximations wi to the eigenfunctions of the continuous operator are then given
by

wi =
n∑

j=1
ηjiφj , wi(�h) = η�i. (13)

Remark 1. Unlike in the 2D Poisson problem, the stiffness matrix A in (10) and hence
its eigenvalues in (11) depend on the mesh size through the multiplicative factor h−1.
This is often avoided by multiplying the system Ax = b by h, which does not affect the
conditioning of the matrix. However, since the algebraic energy norms ‖z‖A and ‖z‖(hA)
are different, such scaling would later be inconvenient, which is why we prefer to keep
the matrix A as in (10).

We now consider solving the system Ax = b using the (unpreconditioned) conjugate
gradient (CG) method [23]. As mentioned in the Introduction, our point is to demon-
strate on the simplest model problem the possible differences in the distribution of the
discretization error and the algebraic error.

Given an initial approximation x0 and the corresponding initial residual r0 ≡ b−Ax0,
the CG method generates approximations xk ∈ x0 + Kk(A, r0), where Kk(A, r0) ≡
span{r0,Ar0, . . . ,Ak−1r0} is the kth Krylov subspace generated by A and r0. It is well
known that these approximations minimize the A-norm of the error, i.e.,

‖x − xk‖A = min
z∈x0+Kk(A,r0)

‖x − z‖A;

see, e.g., [23, Theorem 4.3].
Writing xk = [ξ(k)

1 , . . . , ξ
(k)
n ]T , the resulting approximation of the Galerkin solution uh

in (8) is given by

u
(k)
h =

n∑

j=1
ξ
(k)
j φj . (14)

If u is the exact solution of the model problem (2), then u−uh is the discretization error,
uh − u

(k)
h is the algebraic error, and u − u

(k)
h is the total error. As a simple consequence

of the Galerkin orthogonality property, the energy norms of these errors satisfy

∥∥(u − u
(k)
h

)′∥∥2 =
∥∥(u − uh)′∥∥2 +

∥∥(uh − u
(k)
h

)′∥∥2

=
∥∥(u − uh)′∥∥2 + ‖x − xk‖2

A; (15)

– 12 –
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Fig. 1. Left: the exact solution u (see (16)). Right: the discretization error u − uh; the vertical axis is scaled
by 10−3.

see, e.g., [14, Theorem 1.3, p. 38]. This means that the CG method leads to an approx-
imation u

(k)
h that minimizes the energy norm of the total error over all approximations

determined by coefficient vectors from the affine subspace x0 + Kk(A, r0).

Remark 2. The equality (15) holds for any vector xk ∈ Rn and the corresponding ap-
proximation of the form (14). In particular, it holds also for the results of finite precision
CG computations.

As in [15, p. 120], we consider the exact solution

u = exp
(
−5(x − 0.5)2

)
− exp(−5/4) (16)

of (1). To obtain the right-hand side b of the linear algebraic system one may use (9) and
hence compute b = Ax. In order to use an approach analogous to higher dimensions we
have chosen to evaluate b as in (7) using the MATLAB function quad (i.e. the adaptive
Simpson rule). In comparison with the computation of b = Ax, the differences are,
however, negligible. Furthermore, we have evaluated the error norms by applying the
MATLAB function quad to the analytic expressions for (u − uh)′ and u − uh in each
subinterval.

Let us now describe our numerical results. We consider the FEM discretization using
n = 19 inner nodes. This rather small number of nodes allows us to plot illustrative
figures, but similar results can be obtained for any choice of n. The resulting solution u

and the discretization error u − uh are shown in Fig. 1. The (squared) energy and
L2 norms of the discretization error are equal to (up to the negligible rounding errors in
evaluation of the norms)

∥∥(u − uh)′∥∥2 = 6.8078e−3 and ‖u − uh‖2 = 1.7006e−6. (17)

The condition number of the matrix A is κ(A) = λn/λ1 = 161.4.

– 13 –
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Fig. 2. The relative A-norm of the error ‖x − xk‖A/‖x − x0‖A (solid line), the loss of orthogonality in
the standard CG implementation (dashed line) and the loss of orthogonality in the CG implementation
with double reorthogonalized residuals (dotted line). In our computations, rounding errors do not play
a significant role.

Table 1
Size of the algebraic and total error at several iteration steps for the exact solution (16).

k ‖x − xk‖2
A ‖x − xk‖2 ‖(u − u

(k)
h )′‖2 ‖u − u

(k)
h ‖2

7 6.3002e−2 9.9299e−3 6.9810e−2 4.9817e−4
8 1.4505e−2 9.5751e−4 2.1313e−2 4.9570e−5
9 1.2382e−3 2.7011e−5 8.0459e−3 3.0507e−6

10 6.3248e−30 2.2880e−31 6.8078e−3 1.7006e−6

In our experiments we apply the standard implementation of the CG method [23]
with x0 = 0 to Ax = b. Fig. 2 shows the relative A-norm of the algebraic errors
‖x−xk‖A/‖x−x0‖A. In order to show that rounding errors play (almost) no role in our
reported results, we also plot the loss of orthogonality among the normalized residual
vectors measured in the Frobenius norm for both the standard CG implementation and
the CG implementation with double reorthogonalized residuals, which simulates exact
arithmetic; see, e.g., [22]. We observe that the loss of orthogonality in the standard CG
implementation remains close to the machine precision level, so that the effect of rounding
errors indeed is negligible. Taking into account the distribution of the eigenvalues of A
and the choice x0 = 0, this is to be expected; see [28].

The squared A-norm of the algebraic error ‖x − xk‖2
A at the iteration steps k =

7, 8, 9, 10 is given in the first column of Table 1. The second column contains, for com-
parison, the squared Euclidean norm ‖x − xk‖2. For the energy and the L2 norm of the
total error u − u

(k)
h see the third and the fourth column, respectively.

The algebraic and total errors are visualized for the steps k = 8, 9 in Fig. 3. To describe
our main point we look at the step k = 9. First note that at this step we have

‖x − x9‖2
A = 1.2382e−3 < 6.8078e−3 =

∥∥(u − uh)′∥∥2;

cf. (17). In words, the globally measured energy norm of the algebraic error is smaller
than the globally measured energy norm of the discretization error. On the other hand,

– 14 –
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Fig. 3. The algebraic error uh −u
(k)
h (dashed–dotted line) and the total error u−u

(k)
h (solid line) at the 8th it-

eration (left) and at the 9th iteration (right). The vertical axis in the right part of the figure is scaled by 10−3.

as shown in the right part of Fig. 3, the algebraic error is strongly localized in the middle
of the domain; here in particular at the component ξ

(9)
10 of x9, which is much less accurate

than the other components. This localization of the algebraic error substantially affects
the shape of the total error and leads to the following essential observations:

(1) The spatial distributions of the discretization error and the algebraic error can be
very different from each other.

(2) The value of the (globally measured) energy norm may not be descriptive.

Similar observations of the error distribution can be made for k = 8, which is shown
for illustration in the left part of Fig. 3. In this step, however, we have ‖x − x8‖2

A >

‖(u − uh)′‖2.
The presented example considers the simplest model problem. It does not prove that

in practical problems the observed phenomenon appears on a catastrophic scale. On
the other hand, the presented result is disturbing and poses a question about many
commonly used ways of a posteriori error evaluation using global error measures, not
distinguishing the sources of error or considering only the discretization error.

One may object that if the error is measured in the L2 norm instead of the energy
norm, one does not see much discrepancy – both ‖x−x9‖A and ‖x−x9‖ are still relatively
large in comparison to ‖u − uh‖. This, however, is not an objection against our two
points made above. For the given model problem (as well as for a large class of problems
with self-adjoint bounded and coercive operators; see, e.g., [19,20]) the energy norm is
very natural to consider. With the Galerkin discretization it allows the fundamental
Pythagorean identity to be expressed in the form (15), or, more generally, as

∥∥∇
(
u − u

(k)
h

)∥∥2 =
∥∥∇(u − uh)

∥∥2 + ‖x − xk‖2
A. (18)

This relates in a straightforward way the size of the discretization and algebraic errors.
There is no equality analogous to (18) for the L2 norm of the total, discretization and
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Fig. 4. Left: the exact solution u (see (19)). Right: the discretization error u − uh; the vertical axis is scaled
by 10−4.

Table 2
Size of the algebraic and total error at several iteration steps for the exact solution (19).

k ‖x − xk‖2
A ‖x − xk‖2 ‖(u − u

(k)
h )′‖2 ‖u − u

(k)
h ‖2

7 1.0112e−2 1.1899e−3 1.3612e−2 6.0367e−5
8 2.6905e−3 1.6856e−4 6.1905e−3 9.3021e−6
9 2.5563e−4 5.7123e−6 3.7556e−3 1.1605e−6

10 5.6776e−30 3.8081e−30 3.5000e−3 8.7495e−7

algebraic errors. Moreover, the main point is that evaluation of the algebraic error glob-
ally using any norm is not sufficient. It should be complemented by investigation of the
spatial distribution of the error over the domain or at the local areas of interest.

In order to demonstrate that the above observations are not an artefact of the special
solution u in (16), we show also the results for the polynomial exact solution

u = (x − 2)(x − 1)x(x + 1). (19)

We choose again n = 19. The exact solution u and the discretization error u − uh are
given in Fig. 4; the discretization error u − uh is nonnegative. The squared energy and
L2 norms of the discretization error are equal to

∥∥(u − uh)′∥∥2 = 3.5000e−3 and ‖u − uh‖2 = 8.7495e−7.

Table 2 and Figs. 5–6 give results analogous to those presented above in Table 1 and
Figs. 2–3, respectively.

3. Interpretation of the total error as a modification of the discretization mesh

As argued in [26, p. 9], it is desirable to interpret the inaccuracies in the solution
process (including the algebraic errors) in terms of a meaningful modification of the
mathematical model; see also [35, pp. 33–35]. This idea can be related to the so-called
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Fig. 5. The relative A-norm of the error ‖x − xk‖A/‖x − x0‖A (solid line), the loss of orthogonality in the
standard CG implementation (dashed line) and the loss of orthogonality in the CG implementation with
double reorthogonalized residuals (dotted line).

Fig. 6. The algebraic error uh − u
(k)
h (dashed–dotted line) and the total error u − u

(k)
h (solid line) at the 8th

iteration (left) and at the 9th iteration (right); the vertical axes are scaled by 10−3.

functional backward error by Arioli and others (see, e.g., [6]) where the errors are inter-
preted as (backward) perturbations of the weak formulation of the problem. This can
be appealing in more complicated settings where such perturbation represents a mod-
ification of the mathematical model that has some physical interpretation. Within the
simple problem setting considered above, an introduction of the functional backward
error term counting for inaccurate solving of the discretized algebraic problem into the
left-hand side of problem (2) would not satisfy this natural requirement. As pointed out
in [6], in the simple case of the Poisson problem (or in similar cases where perturbation of
the operator would be difficult to interpret), the operator structure can be preserved by
restricting the perturbation to the right-hand side only. This can be relevant, e.g., when
the right-hand side is dominated by experimental data and the perturbation is small
enough in comparison with experimental errors. In this paper we consider the change of
the discretization, i.e. the basis functions or the mesh, as an alternative.
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Interpreting the algebraic error as a transformation of the FEM basis has been consid-
ered in [21, Section 3]. We will use the idea from [21] but present the result in a slightly
different way. Let the transformation of the basis Φ = [φ1, . . . , φn] (in our problem the
basis of continuous piecewise linear hat functions) to the basis Φ̂ = [φ̂1, . . . , φ̂n] be rep-
resented by a square matrix D = [D�j ] ∈ Rn×n,

φ̂j = φj +
n∑

�=1
D�jφ�, j = 1, . . . , n. (20)

Please note that unlike the original FEM basis functions φj , the transformed basis func-
tions φ̂j , j = 1, . . . , n, need not be of a local support. The relation (20) can be written
in the compact form as

Φ̂ = Φ(I + D),

where I ∈ Rn×n denotes the identity matrix.
The transformation matrix D can be constructed in the following way. An easy cal-

culation shows that an approximate solution x̂ = [ξ̂1, . . . , ξ̂n]T of the algebraic system
Ax = b represents the exact solution of the perturbed system

(A + E)x̂ = b, (21)

where

E = (b − Ax̂)x̂T

‖x̂‖2 . (22)

Let the Galerkin FEM solution uh (see (4)–(8)) satisfy

uh = Φx =
n∑

j=1
ξjφj =

n∑

j=1
ξ̂j φ̂j = Φ̂x̂ = Φ(I + D)x̂ (23)

for some (unknown) matrix D. Then, considering the Galerkin discretization of (2) with
uh = Φ̂x̃, i.e. the discretization basis φ̂1, . . . , φ̂n, and the test functions φ1, . . . , φn gives

a(uh, φi) = �(φi), i = 1, . . . , n, (24)

which can be formulated as the system of the linear algebraic equations

Âx̃ = b,

where
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Âij = a(φ̂j , φi) = a

(
φj +

n∑

�=1
D�jφ�, φi

)

= Aij +
n∑

�=1
Ai�D�j , (25)

i.e.

Â = A + AD. (26)

Consequently, knowing the algebraic perturbation matrix E from (21), we can set

AD = E, giving D = A−1E, (27)

with x̂ = x̃ the exact algebraic solution of (21) representing the Galerkin solution uh

of (2) in the sense of (24).

Remark 3. Since E is determined by the algebraic errors in solving Ax = b, we have
no control of the sparsity of the transformation matrix D = A−1E, which is, in general,
dense. Therefore the transformed basis functions φ̂j , j = 1, . . . , n, have, in general,
global supports. This holds also when E is determined using componentwise backward
error with its structure of nonzeros entries determined, e.g., by the structure of nonzeros
in A. Since A−1 is, in general, dense, D = A−1E is also dense.

When we set x̂ = x8 for our experimental illustration with the exact solution (16),
the norms of the perturbation and transformation matrices are

‖E‖ = 3.2976e−1, ‖D‖ = 1.4674e−2.

Fig. 7 gives the matrices E (see (22)) and D (see (27)) visualized using the MATLAB
surf command. We can see the effect of the multiplication by A−1: the transformation
matrix D has significantly more entries with the size far from zero than the perturbation
matrix E. It should be pointed out that our example is on purpose very simple and the
mapping from E to D = A−1E is for the given A rather benign (the norm ‖D‖ is even
smaller than ‖E‖). In practical problems this may not be the case and D can have large
nonzero elements. The left part of Fig. 8 shows (for the same approximation x̂ = x8) the
example of the transformed basis function φ̂j (here φ̂5; see (20)). Since the entries of the
matrix D are of the order 10−3, φ̂5 looks visually the same as φ5. The difference φ̂5 −φ5
is plotted in the right part of Fig. 8. For other basis functions the situation is analogous.
The size of the differences φ̂j − φj , j = 1, . . . , n, corresponds to the size of the algebraic
error (as well as the discretization error when the algebraic and discretization errors are
in balance).

When we consider the approximation x̂ = x9 given at the 9th CG iteration step, the
norms of the corresponding perturbation and transformation matrices are
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Fig. 7. The perturbation matrix E (left) and the transformation matrix D (right) (with the entries visu-
alized using the MATLAB surf command) for the approximation x̂ = x8 in the example with the exact
solution (16). The right vertical axis is scaled by 10−3.

Fig. 8. The transformed basis function φ̂5 (left) and the difference φ̂5 − φ5 (right) for the approximation
x̂ = x8 in the example with the exact solution (16). For the other basis functions the situation is analogous.
The right vertical axis is scaled by 10−3; see the scale in the right part of Fig. 1.

‖E‖ = 1.2976e−1, ‖D‖ = 2.4469e−3,

and the visualization of E, D and the difference φ̂j − φj , j = 1, . . . , n, is analogous.
For the second example with the exact solution (19) and the approximation x̂ = x9

given at the 9th CG iteration step, the norms of the perturbation and transformation
matrices are

‖E‖ = 6.8757e−2, ‖D‖ = 1.3220e−3.

Fig. 9 gives the matrix E and the matrix D. For the transformed basis function φ̂11 and
the difference φ̂11 − φ11 see Fig. 10.

In the rest of this section we interpret (with some unimportant inaccuracy) the total
error u − u

(9)
h for the last example (the exact solution u is given by (19) and u

(9)
h is
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Fig. 9. The perturbation matrix E (left) and the transformation matrix D (right) (with the entries visu-
alized using the MATLAB surf command) for the approximation x̂ = x9 in the example with the exact
solution (19). The right vertical axis is scaled by 10−4.

Fig. 10. The transformed basis function φ̂11 (left) and the difference φ̂11 − φ11 (right) for the approximation
x̂ = x9 in the example with the exact solution (19). For the other basis functions the situation is analogous.
The right vertical axis is scaled by 10−4; see the scale in the right part of Fig. 4.

determined using the approximation x9 computed at the 9th CG step) as the discretiza-
tion error u−uH , where the Galerkin FEM solution uH corresponds to a new mesh and
new basis functions which preserve the locality of their support. We are aware that this
interpretation is here specific for the one-dimensional problem as it is certainly not easily
applicable in general, especially for higher-dimensional problems. However, the distortion
of the mesh illustrated below shows the possible disturbing effects of the localization of
the algebraic error.

The Galerkin FEM solution uH coincides with the solution u at the nodes of the mesh;
see [8, Corollary 4.1.1]. Therefore we construct the new mesh in such a way that the new
nodes τi are given as the roots of the total error u − u

(9)
h (i.e. the discretization error

u − uH) and therefore

uH(τi) = u(τi) = u
(9)
h (τi).
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In order to interpret the large total error in the middle of the interval as the discretization
error, we replace (with no claim for optimality) the central node 0.5 of the original mesh
by two nodes defined as 0.5 ± 0.7h, i.e.

τi, i = 1, . . . , 18 = roots of u − u
(9)
h for 0 < x < 0.5,

τ19 = 0.5 − 0.7h,

τ20 = 0.5 + 0.7h,

τi, i = 21, . . . , 38 = roots of u − u
(9)
h for 0.5 < x < 1.

(28)

The new mesh now consists of n = 38 inner nodes, with 36 of them forming 18 close
pairs. Please note that the new central element is 1.4 times longer than the elements in
the original (uniform) mesh,4 i.e. τ20 − τ19 = 1.4h.

Let ψj , j = 1, . . . , n, be the continuous piecewise linear FEM basis functions satisfying

ψj(τj) = 1,

ψj(x) = 0, 0 � x � τj−1 and τj+1 � x � 1.

As mentioned above, the Galerkin solution uH coincides with the solution u at the nodes
of the mesh. We can therefore write

uH =
n∑

j=1
ξjψj , ξj = u(τj), j = 1, . . . , n.

The discretization error u − uH is nonnegative and the squared energy and L2 norms of
the discretization error u − uH are close to the analogous quantities for u − u

(9)
h ,

∥∥(u − uH)′∥∥2 = 3.4224e−3 respectively ‖u − uH‖2 = 9.8141e−7,

while
∥∥(u − u

(9)
h

)′∥∥2 = 3.7556e−3 respectively
∥∥u − u

(9)
h

∥∥2 = 1.1605e−6.

The comparison of the discretization error u−uH with the total error u−u
(9)
h is given in

the left part of Fig. 11. With our choice of the nodes (28), the positive values of u−u
(9)
h

coincide, except for τ18 < x < τ21, with the error u−uH ; see the detail of the comparison
in the right part of Fig. 11. There is a slight discrepancy between u − uH and u − u

(9)
h

for τ18 < x < τ21.
Interpretation of the total error as the error of the exact discretized solution using

a modified discretization mesh can rise, as illustrated above, interesting points. First, the

4 This is the reason for denoting the Galerkin FEM solution corresponding to the new mesh with the
subscript H commonly used for denoting the quantities corresponding to a coarser mesh.
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Fig. 11. Left: the total error u − u
(9)
h for the original mesh (solid line) and the discretization error u − uH on

the modified mesh (dashed line); the vertical axis is scaled by 10−3. Right: the detail showing the coincidence
of the positive values of u − u

(9)
h with u − uH for most of the interval and their slight discrepancy in the

middle; the vertical axis is scaled by 10−4.

algebraic error can be interpreted, in the sense described above, as the loss of locality of
the support of the modified Galerkin basis functions. Second, the computed approximate
solution u

(k)
h which includes the error in the solution of the algebraic system can be

interpreted (here with a small inaccuracy) as the discrete solution (with the vanishing
algebraic error) for a mesh which can possibly have “holes” in the areas where the
algebraic error is large (in our construction specific for the 1D problem the mesh has
a “hole” in the center of the interval).

4. Spatial distribution of the error in CG computations

In this section we explain the behavior of the algebraic error observed above; see
also [26, Section 5.9.4]. In the following we present the experimental illustration with
the exact solution (16); see also Figs. 7 and 8. The exposition uses the close relationship
between CG and the Lanczos algorithm; for details see the original papers [23,25] and
also the survey [28].

Consider the spectral decomposition of the CG error at the kth step,

x − xk =
n∑

i=1
(x − xk,yi)yi, (29)

where, as above, yi denotes the ith normalized eigenvector of A corresponding to the
eigenvalue λi; see (11)–(12). We denote by θ

(k)
j , j = 1, . . . , k, the approximations of

the eigenvalues of the matrix A (Ritz values) given at the kth iteration of the Lanczos
algorithm applied to the matrix A and the starting vector r0/‖r0‖. Assuming exact
arithmetic, a close approximation of the eigenvalue λi by a Ritz value θ

(k)
j means that the

size of the ith component |(x−xk,yi)| of the error x−xk of the kth CG approximation
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Fig. 12. Left: the squared size of the spectral components |(x−x0, yi)|2, i = 1, . . . , n, of the initial error x−x0.
Right: convergence of the Ritz values (circles) to the eigenvalues of A (dots) in iterations 1 through 10.

in the direction yi becomes small; see, e.g., [28, Theorem 3.3]. As mentioned above,
the effect of rounding errors is in our example negligible. Consequently, the previous
statement holds also for the presented results of finite precision computations.

Since some eigenvalues of A are approximated by Ritz values much faster than the
others, this fact is reflected in the different behavior of the size of the spectral components
|(x − xk,yi)|, i = 1, . . . , n, as k increases, k = 0, 1, . . . . The individual eigenvectors yi

have different oscillating patterns; and therefore the individual spectral components of
x − xk can develop in a rather nonuniform way as k increases. Using

uh − u
(k)
h = Φ(x − xk) =

n∑

i=1
(x − xk,yi)Φyi =

n∑

i=1
(x − xk,yi)wi,

this can result in a rather nonuniform spatial distribution of the algebraic (and the total)
error in Ω. We will illustrate this situation in the following figures.

The squared size of the spectral components |(x −x0,yi)|2, i = 1, . . . , n, of the initial
error x−x0 is given in the left part of Fig. 12. Recall that x0 = 0 and therefore the initial
error is equal to the solution x. Since the solution is symmetric with respect to the center
0.5 of the given interval, the spectral components with even indices vanish (the corre-
sponding projections computed in finite precision arithmetic are on the machine precision
level). Since the initial error x−x0 is smooth (i.e. nonoscillating), the components of the
error with higher indices, which correspond to more oscillating eigenvectors (see (12)),
significantly decrease with increasing index i. The Ritz values θ

(k)
j , j = 1, . . . , k, are for

k = 1, . . . , 10 given in the right part of Fig. 12. The dots represent the eigenvalues of
matrix A. As expected, the Ritz values approximate the eigenvalues with odd indices.
At the 10th iteration, all such eigenvalues are approximated, all components of the error
x − x10 become very small and the norm of the algebraic error drops to the machine
precision level; see Fig. 2 and Table 1. We can observe that the eigenvalues λ1, λ3 and
partially also λ5 are approximated much faster (for smaller iteration number) than the
others.
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Fig. 13. The development of the squared size of the spectral components of the algebraic error |(x−xk, yi)|2,
i = 1, 3, . . . , 19, for the iteration steps k = 0, 7, 8, 9 (solid, dashed, dashed–dotted and dotted lines respec-
tively). We can observe equilibrating of the size of the spectral components as k increases.

In Fig. 13 the development of the squared size of the spectral components of the
algebraic error x − xk is shown for k = 0, 7, 8, 9 (only the values with odd indices are
plotted; the rest remain at the level 10−30). We can see that the CG method reduces
quickly the dominating spectral components of the error which corresponds to the fast
approximation of the eigenvalues λ1 and λ3 by the Ritz values illustrated above. With
increasing k the spectral components of x−xk almost equilibrate. As a consequence, the
spatial distribution of the error x − xk changes as k increases and it eventually becomes
highly nonuniform in the way substantially different than the spatial distribution of the
initial error x − x0.

This situation is illustrated in Figs. 14 and 15, where we plot the most dominating
approximations wi to the eigenfunctions of the continuous operator (see (13) and (29)),
corresponding to the initial error x − x0 and to the error x − x9 respectively. The right
bottom part of Fig. 14 shows the algebraic part of the initial error in the function space,
which is given as the linear combination of the eigenfunction approximations with odd
indices

uh − u
(0)
h = Φ(x − x0) =

10∑

i=1
(x − x0,y2i−1)w2i−1. (30)

(As mentioned above, we use x0 = 0 and therefore uh − u
(0)
h = uh.) The right bottom

part of Fig. 15 shows the algebraic part of the error

uh − u
(9)
h = Φ(x − x9) ≈

10∑

i=1
(x − x9,y2i−1)w2i−1; (31)

please compare with the algebraic error given in the right part of Fig. 3. Here we neglect
the spectral components of x−x9 in the direction of even eigenvectors of A which remain
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Fig. 14. The approximate eigenfunctions wi corresponding to the largest components of the initial algebraic
error x − x0 in the eigenvector basis of the matrix A and the algebraic part uh − u

(0)
h of the initial error

u − u
(0)
h (see (30)) (the dashed–dotted line in the right bottom part).

Fig. 15. The approximate eigenfunctions wi corresponding to the largest components of the algebraic error
x − x9 in the eigenvector basis of the matrix A and the algebraic part uh − u

(9)
h of the error u − u

(9)
h

(see (31)) (the dashed–dotted line in the right bottom part). The vertical axis in the right bottom part of
the figure is scaled by 10−3.

at the machine precision level (and therefore we use the approximation instead of the
equality).
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In the following remark we do not consider the effects of rounding errors (it can
easily be shown that for the given point their effects are not important). Since the CG
approximate solution xk satisfies xk ∈ x0 + Kk(A, r0), we have

x − xk ∈ x − x0 + Kk(A, r0).

The highly irregular spatial distribution of uh − u
(9)
h observed above is caused by elimi-

nating (to some extent) the spectral components with slowly changing eigenvectors, which
dominate the initial error uh −u

(0)
h . As we have seen, all spectral components eventually

become almost equal in size and the effect of rapidly changing eigenvectors becomes pro-
nounced. This cannot be explained as one may seemingly suggest and as we have several
times experienced during the preparation of this paper, by adding an “oscillatory” vector
from Kk(A, r0) to x − x0.

5. 2D illustrations

Using a simple 1D model problem, we illustrated above that the spatial distribution of
the algebraic error can significantly differ from the spatial distribution of the discretiza-
tion error. Because of its possibly large components in some parts of the domain, the
algebraic error can determine the spatial distribution of the total error u − u

(k)
h even

when its globally measured size (here its energy norm) is smaller than the size of the dis-
cretization error. We emphasize that the described phenomenon is of general importance.
It cannot be attributed to the specifics of the 1D model problem or the CG method used
here for illustration. Of course, its appearance will be different for other problems or
algebraic solvers.

In order to illustrate that the same phenomenon can appear also in more complicated
settings, we present experiments using two well-known 2D model problems; see, e.g.,
[1,27].

Peak problem. We consider the 2D Poisson boundary value problem

−Δu = f in Ω ≡ (0, 1) × (0, 1), u = 0 on ∂Ω. (32)

The right-hand side f is chosen so that the solution u is given by

u(x, y) = x(x − 1)y(y − 1) exp
(

−100
(
x − 1

2

)2
− 100

(
y − 117

1000

)2)
; (33)

see the upper left part of Fig. 16.

L-shape problem. We consider the 2D Poisson boundary value problem

−Δu = 0 in Ω, u = uD on ∂Ω, (34)
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Fig. 16. Peak model problem (32) solved using an adaptively refined mesh with 1486 nodes. Upper left: the
solution u (33). Upper right: the discretization error u−u∗

h; vertical axis is scaled by 10−5. Bottom left: the
algebraic error u∗

h −u
(k)
h ; vertical axis is scaled by 10−5. Bottom right: the total error u−u

(k)
h ; vertical axis

is scaled by 10−4. The functions are visualized as piecewise affine functions using the MATLAB trisurf
command.

where Ω ≡ (−1, 1) × (−1, 1) \ (0, 1) × (−1, 0). The Dirichlet boundary condition uD is
chosen so that the solution u is given in polar coordinates (r, θ) by

u(r, θ) = r2/3 sin
(

2
3θ

)
; (35)

see the upper left part of Fig. 17.

For each model problem we consider a sequence of partitions (meshes) of the do-
main Ω into the union of non-overlapping, triangular elements such that the non-empty
intersection of a distinct pair of elements is a single common node or a single common
edge. On a given mesh we discretize the problem, analogously to Section 2, using the
piecewise affine finite elements with the basis given by the hat-functions, i.e. the piece-
wise affine functions such that each one corresponds to a node of the partition taking
there value 1 and vanishing in all other nodes. The boundary condition uD is approxi-
mated by a piecewise affine function given by the values of uD in the boundary nodes.
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Fig. 17. L-shape model problem (34) solved using an adaptively refined mesh with 3376 nodes. Upper left:
the solution u (35). Upper right: the discretization error u − u∗

h; vertical axis is scaled by 10−4. Bottom
left: the algebraic error u∗

h − u
(k)
h ; vertical axis is scaled by 10−4. Bottom right: the total error u − u

(k)
h ;

vertical axis is scaled by 10−4. The functions are visualized as piecewise affine functions using the MATLAB
trisurf command.

The stiffness matrix and right-hand side are assembled using the MATLAB code listed
in [2].

Starting from the regular initial coarse mesh T0 consisting of 128 congruent trian-
gles for the peak problem and of 192 congruent triangles for the L-shape problem, the
sequence of adaptively refined meshes T1, T2, . . . is generated using the Adaptive Finite
Element Method (AFEM). One iteration of AFEM can schematically be written as fol-
lows:

SOLVE → ESTIMATE → MARK → REFINE.

Here “SOLVE” means assembling and solving the system of the linear algebraic equa-
tions. We solve the systems using the MATLAB backslash operator that gives, for our
experiments, sufficiently accurate approximations (i.e. approximations with a normwise
relative backward error on the machine precision level). The corresponding piecewise
affine approximations are denoted by u∗

h. “ESTIMATE” means the local a posteriori es-
timation of the error between the exact solution u and its numerical approximation u∗

h.
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We consider the residual-based local error estimator (indicator), for an element T of
partition T� and a piecewise affine approximation u∗

h

η2
R,T

(
u∗

h

)
≡ h2

T ‖f‖2
L2(T ) +

∑

E⊂∂T

hE

∥∥[∇u∗
h · nE

]∥∥2
L2(E), (36)

where hT ≡ diam(T ) denotes the diameter of the element T , hE ≡ diam(E) denotes
the length of an edge E ⊂ ∂T , and [∇u∗

h · nE ] denotes the jump of piecewise constant
function ∇u∗

h over edge E. In a comparison of 13 a posteriori error estimators on five
benchmark problems, the estimator ηR,T (u∗

h) was found appropriate for practical use in
adaptive algorithms in [11, Section 8]. For marking the elements (“MARK”) we consider
the so-called greedy algorithm; see [11, Section 6]. Let the elements of T� be enumerated
such that ηR,T1(u∗

h) � ηR,T2(u∗
h) � · · · (this enumeration is used here for the sake of

a full rigor; practical algorithms use techniques described in literature given below).
For a given Θ ∈ (0, 1] we find the smallest index m such that

Θ
∑

T∈T�

η2
R,T

(
u∗

h

)
�

m∑

j=1
η2

R,Tj

(
u∗

h

)
;

see [12, Section 4.2] and for further development [37]. In the experiments we set Θ ≡ 0.25.
Finally, “REFINE” stands for the refinement of the elements T1, . . . , Tm and the neigh-
boring ones such that the conformity of the mesh is preserved. In the experiments we
consider the refinement by Newest-Vertex-Bisection [29] implemented as in [17, Sec-
tion 5.2].

For the first illustration we consider the peak model problem (32) and we use the
mesh T13 given at the 13th AFEM iteration consisting of 1486 nodes. The tightly approx-
imated squared energy norm of the discretization error (computed using the elementwise
16-node Gauss quadrature that is exact for polynomials up to degree 8; see, e.g., [13]) is
equal to

∥∥∇
(
u − u∗

h

)∥∥2 = 9.5258e−6. (37)

The discretization error u−u∗
h visualized as a piecewise affine function (using the MAT-

LAB trisurf command) is shown in the upper right part of Fig. 16.
The linear algebraic system Ax = b is of order 1436, which is equal to the number

of the inner nodes in T13; the condition number is κ(A) = 1936.8 (evaluated using the
MATLAB cond function). Analogously to the 1D case, we apply the CG method with
x0 = 0 to Ax = b. We stop at the iteration step k = 67 when the squared energy norm
of the algebraic error ‖x∗ − xk‖2

A drops below one percent of the squared energy norm
of the discretization error, i.e.

∥∥x∗ − xk

∥∥2
A < 0.01

∥∥∇
(
u − u∗

h

)∥∥2
, (38)
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where x∗ denotes the approximation to the solution x given by the MATLAB back-
slash operator. The criterion (38) is used here for a maximal rigor of our experimental
illustrations. In practice a suitable approximation of x is not available, ‖x − xk‖A is
estimated in various ways and incorporating algebraic error estimates into a posteriori
error analysis with using it for construction of algebraic stopping criteria requires sub-
stantial further investigation; see, e.g., [4, Section 4.1], [28, Section 5.3], [39,40,24,3,6,5].
We denote by u

(k)
h the piecewise affine approximation corresponding to the CG approx-

imation xk. The squared energy norms of the algebraic error and the total error are
equal to

∥∥x∗ − xk

∥∥2
A = 7.7295e−8,

∥∥∇
(
u − u

(k)
h

)∥∥2 = 9.6018e−6. (39)

Please recall the corresponding energy norm of the discretization error (37) and see
the equality (18). The norm of the total error ‖∇(u − u

(k)
h )‖2 is (tightly) approximated

using elementwise the 16-node Gauss quadrature rule. As we can see in the bottom
parts of Fig. 16, the algebraic error u∗

h − u
(k)
h substantially affects the shape of the total

error u−u
(k)
h in the part of the domain Ω where the solution u is (nearly) constant (with

small gradients) as well as in the part where u has large gradients.
For the second illustration we consider the L-shape model problem (34) and we use

the mesh T13 given at the 13th AFEM iteration consisting of 3376 nodes. The quantities
analogous to those presented above in (37) and (39) are

∥∥∇
(
u − u∗

h

)∥∥2 = 2.4512e−4,
∥∥x∗ − xk

∥∥2
A = 2.3873e−6, (40)

∥∥∇
(
u − u

(k)
h

)∥∥2 = 2.4751e−4.

Here the system Ax = b is of order 3210, and the condition number is κ(A) = 1230.3
(evaluated using the MATLAB cond function). The stopping criterion (38) is satisfied
at the iteration step k = 107. The piecewise affine visualization of the discretization
error u − u∗

h is given in the upper right part of Fig. 17. As we can see in the bottom
parts of Fig. 17, the algebraic error u∗

h − u
(k)
h substantially affects the shape of the total

error u − u
(k)
h in most of the domain Ω.

6. Concluding remarks

The demonstrated difference between the spatial distributions of the algebraic and
the discretization error across the domain (here obtained for the CG method) underlines
the importance of constructing reliable stopping criteria for iterative algebraic solvers. In
particular, in addition to evaluating parts of the error of different origin (discretization,
inaccurate algebraic computations) in appropriate norms, such criteria should take into
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account spatial distribution of the total error in the function space. References to the
work in this direction can be found in the recent survey [4]; see also, e.g., [24, Section 6]
and [16]. One should also recall the goal-oriented adaptivity approach of Rannacher,
Becker and their collaborators in the context of duality-based error control, which allows
balancing discretization and iteration error in the problem-related areas of interest; see,
e.g., the survey papers [33,18] and the references given there. We believe that further
developments focusing on the spatial distribution of the algebraic and total errors will
be reported in the near future.
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2.2 Additional numerical experiments

In order to further demonstrate the possible difference between the spatial dis-
tribution of the discretization and algebraic errors across the solution domain we
provide additional numerical experiments using two model problems with inho-
mogeneous diffusion tensor. The problems are from the class

−∇ · (S∇u) = 0 in Ω ≡ (−1, 1)× (−1, 1) ,

u = uD on ∂Ω ,
(2.1)

where the domain Ω is divided into four subdomains Ωi corresponding to the axis
quadrants numbered counterclockwise and S is a piecewise constant multiple of
the identity matrix, S|Ωi

≡ siI, si > 0 ; see, e.g., [Morin et al., 2002, Section 5.3].
The energy norm corresponding to the problem (2.1) is ‖S1/2∇v‖, v ∈ H1

0 (Ω).

Inhomogeneous tensor problem I. We consider the problem (2.1) with the
exact solution u given in polar coordinates (r, θ) by

u(r, θ)|Ωi
= rα(ai sin(αθ) + bi cos(αθ)) , (2.2)

where

s1 = s3 = 5, s2 = s4 = 1

α = 0.53544095

a1 = 0.44721360 b1 = 1.00000000

a2 = −0.74535599 b2 = 2.33333333

a3 = −0.94411759 b3 = 0.55555556

a4 = −2.40170264 b4 = −0.48148148

This choice of parameters was considered, e.g., in Luce and Wohlmuth [2004];
Jiránek et al. [2010]; Carstensen and Merdon [2010]. The corresponding solution u
(2.2) is given in the left part of Figure 2.1.

Figure 2.1: Left: the solution (2.2). Right: an example of adaptively refined
mesh.
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Inhomogeneous tensor problem II. We consider the problem (2.1) with the
exact solution u given in polar coordinates (r, θ) by

u(r, θ)|Ωi
= rγµi(θ) , (2.3)

where

s1 = s3 = 161.4476387975881

s2 = s4 = 1

γ = 0.1

µ1(θ) = cos((π/2− σ)γ) · cos((θ − π/2 + ρ)γ)

µ2(θ) = cos(ργ) · cos((θ − π + σ)γ)

µ3(θ) = cos(σγ) · cos((θ − π − ρ)γ)

µ4(θ) = cos((π/2− ρ)γ) · cos((θ − 3π/2− σ)γ)

ρ = π/4

σ = −14.92256510455152

see [Morin et al., 2002, Section 5.3]. The solution u (2.3) is given in the left part
of Figure 2.2; the figure is rotated in comparison with the previous one.

Figure 2.2: Left: the solution (2.3). Right: an example of adaptively refined
mesh.

The initial mesh is the same for both model problems I and II and it con-
sists of 128 congruent triangles. The setting of the AFEM procedure generating
sequences of the adaptively refined meshes and the notation is adopted from
[Papež et al., 2014, Section 5]. The residual-based local error estimator for the
problem (2.1) reads as (see, e.g., [Carstensen and Merdon, 2010, Section 2])

η2
R,T (u∗h) ≡

h2
T

sT
‖f‖2

L2(T ) +
∑

E⊂∂T

hE
sE
‖[S∇u∗h · nE]‖2

L2(E) , (2.4)

where sT = si for T ⊂ Ωi, and sE ≡ max{sT | E ∈ ∂T}.
Recall that x∗ denotes the MATLAB backslash approximation to the solu-

tion of the algebraic system corresponding to the discretization of (2.1) on the
given mesh using piecewise affine finite elements and u∗h stands for the piecewise
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affine approximation determined by x∗. As in [Papež et al., 2014, Section 5],
MATLAB backslash operator gives for our experiments sufficiently accurate ap-
proximations and, neglecting the associated numerical error, we will identify u∗h
with the Galerkin FEM solution.

For numerical illustrations we consider (for each model problem) three adap-
tively refined meshes with the number of vertices exceeding 3000, 10 000, and
20 000, respectively. For the corresponding discrete algebraic systems we apply
the (unpreconditioned) conjugate gradient method with zero initial guess. We
stop the iteration when the k-th CG approximation xCG(k) satisfies

‖x∗ − xCG(k)‖2
A < 0.01 ‖S1/2∇(u− u∗h)‖2 (2.5)

and denote by uCGh the piecewise affine function corresponding to the coefficient
vector xCG(k). We also apply the aggregation-based algebraic multigrid (AGMG,
Notay [2010, 2012]; Napov and Notay [2012]) using the MATLAB implementa-
tion Notay [2010–2013] with the default choice of parameters. This means that
the zero initial guess is used, maximal number of (multigrid) iterations is 100 and
the tolerance on the relative residual norm is set to 10−6, i.e. we stop the iteration
when the `-th AGMG approximation xAGMG(`) satisfies

‖b−AxAGMG(`)‖
‖b‖ ≤ 10−6 . (2.6)

The piecewise affine approximation determined by the coefficient vector xAGMG(`)

is denoted by uAGMG
h .

2.2.1 Results for Inhomogeneous tensor problem I

The problem exhibits singularity at the origin due to the discontinuity of diffusion
coefficient. The error u∗h−uCGh affects the total error u−uCGh in most of the domain
for all three meshes considered. The error u∗h−uAGMG

h remains on (or below) the
level 10−6 and we observe its oscillatory behavior.

Mesh with 3625 nodes

The adaptively refined mesh generated at the 15th step of AFEM has 3625 nodes.
The corresponding algebraic system is of the size 3537 with the condition number
κ(A) = 1.39× 104. The squared energy norms of the errors are

‖S1/2∇(u− u∗h)‖2 = 1.33× 10−2,

‖x∗ − xCG(107)‖2
A = 1.32× 10−4,

‖x∗ − xAGMG(11)‖2
A = 1.04× 10−10.

The errors are depicted in Figure 2.3.

Mesh with 10 082 nodes

We consider the mesh with 10 082 nodes generated at the 18th step of AFEM.
The corresponding algebraic system is of the size 9927 with the condition number
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Figure 2.3: Inhomogeneous tensor problem I, mesh with 3625 nodes: discretiza-
tion error u − u∗h (upper left), algebraic error in CG u∗h − uCGh (upper right),
algebraic error in AGMG u∗h − uAGMG

h (bottom left). Vertical axes are scaled
by 10−3, 10−3, and 10−6, respectively. Bottom right: absolute values of errors on
the line y = x.

κ(A) = 3.97× 104. The squared energy norms of the errors are

‖S1/2∇(u− u∗h)‖2 = 4.68× 10−3,

‖x∗ − xCG(208)‖2
A = 4.54× 10−5,

‖x∗ − xAGMG(11)‖2
A = 7.72× 10−10,

and the errors are given in Figure 2.4.

Mesh with 25 780 nodes

At the 21st step of AFEM the adaptively refined mesh has 25 780 nodes, the
corresponding algebraic system is of the size 25 532 with κ(A) = 1.01× 105 and

‖S1/2∇(u− u∗h)‖2 = 1.85× 10−3,

‖x∗ − xCG(469)‖2
A = 1.85× 10−5,

‖x∗ − xAGMG(15)‖2
A = 1.89× 10−9.

Because the mesh is too fine for plotting the associated errors over the whole
domain, Figure 2.5 depicts only the cross-section error plot over the line y = x.
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Figure 2.4: Inhomogeneous tensor problem I, mesh with 10 082 nodes: discretiza-
tion error u − u∗h (upper left), algebraic error in CG u∗h − uCGh (upper right),
algebraic error in AGMG u∗h − uAGMG

h (bottom left). Vertical axes are scaled
by 10−4, 10−3, and 10−6, respectively. Bottom right: absolute values of errors on
the line y = x.

Figure 2.5: Inhomogeneous tensor problem I, mesh with 25 780 nodes: absolute
values of errors on the line y = x.
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2.2.2 Results for Inhomogeneous tensor problem II

The problem exhibits strong singularity at the origin, where the solution (2.3)
has a steep gradient. Consequently, the meshes are refined only near the origin,
the size of the smallest elements of the mesh with 22 648 nodes (used in the
third experiment) is approximately 10−13. The different size of the elements
leads to slightly higher condition numbers in comparison with previous problem.
However, the conditioning (κ(A) = 4.81× 105 for the mesh with 22 648 nodes) is
still moderate.

In the experiments, the discretization error u− u∗h exhibits strong peak near
the origin. In the rest of the domain, |u − u∗h| is below 10−4. The algebraic
error in CG u∗h − uCGh is localized in the quadrants where the diffusion tensor is
equal to I and it is several orders of magnitude smaller in the quadrants where
diffusion tensor is large. This is a nice demonstration of the fact that CG method
minimizes the energy norm of the error. However, the error u∗h − uCGh dominates
the total error u − uCGh in most of the domain. The error u∗h − uAGMG

h grows to
the level 10−7 which is still in most of the domain smaller than the discretization
error.

Mesh with 3247 nodes

The mesh generated at the 35th step of AFEM has 3247 nodes. The corresponding
algebraic system is of the size 3200 with the condition number κ(A) = 6.05× 104.
The squared energy norms of the errors are

‖S1/2∇(u− u∗h)‖2 = 4.31× 10−1,

‖x∗ − xCG(161)‖2
A = 3.98× 10−3,

‖x∗ − xAGMG(11)‖2
A = 4.12× 10−12.

The errors are depicted in Figure 2.6.

Mesh with 10 856 nodes

The mesh generated at the 43rd step of AFEM has 10 856 nodes. The cor-
responding algebraic system is of the size 10 790 with the condition number
κ(A) = 2.27× 105. The squared energy norms of the errors are

‖S1/2∇(u− u∗h)‖2 = 1.51× 10−1,

‖x∗ − xCG(343)‖2
A = 1.50× 10−3,

‖x∗ − xAGMG(11)‖2
A = 1.09× 10−11,

and the errors are given in Figure 2.7.
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Figure 2.6: Inhomogeneous tensor problem II, mesh with 3247 nodes: discretiza-
tion error u − u∗h (upper left), algebraic error in CG u∗h − uCGh (upper right),
algebraic error in AGMG u∗h − uAGMG

h (bottom left). Vertical axes are scaled
by 100, 10−3, and 10−8, respectively. Bottom right: absolute values of errors on
the line y = −x.

Mesh with 22 648 nodes

At the 48th step of AFEM the adaptively refined mesh has 22 648 nodes, the
corresponding algebraic system is of the size 22 538 with κ(A) = 4.81× 105 and

‖S1/2∇(u− u∗h)‖2 = 7.64× 10−2,

‖x∗ − xCG(520)‖2
A = 7.42× 10−4,

‖x∗ − xAGMG(11)‖2
A = 2.82× 10−11.

The mesh is too fine for plotting the associated errors over the whole domain,
and therefore Figure 2.8 depicts only the cross-section error plot over the line
y = −x.
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Figure 2.7: Inhomogeneous tensor problem II, mesh with 10 856 nodes: discretiza-
tion error u−u∗h (upper left), algebraic error in CG u∗h−uCGh (upper right), alge-
braic error in AGMG u∗h−uAGMG

h (bottom left). Vertical axes are scaled by 10−3,
10−3, and 10−8, respectively. Bottom right: absolute values of errors on the line
y = −x.

Figure 2.8: Inhomogeneous tensor problem II, mesh with 22 648 nodes: absolute
values of errors on the line y = −x.
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3. Backward error interpretation
in numerical PDEs

Backward error interprets the inaccuracies in the solution process as a meaningful
modification of the mathematical model. So-called functional backward error by
Arioli and others (see, e.g., Arioli et al. [2001]) interprets the errors as (back-
ward) perturbations of the weak formulation of the problem. In Nordbotten and
Bjørstad [2008]; Keilegavlen and Nordbotten [2015], the error is interpreted as
the perturbation of the diffusion tensor, which is in the applications considered
therein a subject of uncertainty. These ideas are appealing in more complicated
settings where such perturbations represent a modification of the mathematical
model that has some physical interpretation. Within the simple problem setting
considered in the thesis, we will proceed in a different way.

The algebraic backward error is a standard tool in error analysis that inter-
prets inaccuracies in the solution of an algebraic problem as a perturbation of the
data defining the problem; see, e.g., [Higham, 2002, Chapter 7]. We relate the
algebraic backward error with transformation of the discretization basis in Sec-
tion 3.2 and with a modification of the so-called Green’s function in Section 3.3.
We further use the algebraic backward error for estimating the algebraic forward
error via the Fréchet derivative of the matrix inversion; see Section 3.4. The aim
of these interpretation is to provide a new perspective to estimating the algebraic
error, especially in the context of solving boundary value problems. We are aware
that the interpretations in their present form seem not to be beneficial from a
computational viewpoint because of their evaluation cost.

Consider a problem given in the weak form: Find u ∈ V such that

a(u, v) = `(v) ∀v ∈ V, (3.1)

where V is a Hilbert space, a(·, ·) : V ×V → R is a bilinear form, and `(·) : V → R
is a linear bounded functional on V . We assume that (3.1) admits the unique
solution u. We keep the exposition as general as possible; however, in some parts
of the chapter we restrict ourselves to a linear second order elliptic PDEs that
generate self-adjoint operators, i.e., to a(·, ·) symmetric, bounded and V -elliptic.

Let now Vh ⊂ V be a finite-dimensional subspace. The function uh ∈ Vh
satisfying

a(uh, vh) = `(vh) ∀vh ∈ Vh (3.2)

is called the Galerkin solution of (3.1). Let Φ = {φ1, . . . , φN} be a basis of Vh.
The coefficients x of the Galerkin solution uh = Φx =

∑N
i=1(x)i φi with respect

to the basis Φ are given as the solution of the linear algebraic system

Ax = b , (3.3)

where

(A)ij = a(φj, φi) ,

(b)i = `(φi) , i, j = 1, . . . , N .
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Throughout the chapter we assume that A is non-singular. For a(·, ·) symmetric,
bounded, and V -elliptic, the matrix A is symmetric positive definite (SPD).

The ideas of the chapter were partially developed in discussions with Zlatko
Drmač, Jörg Liesen, Samuel Relton, Zdeněk Strakoš, Mattia Tani and Tomáš
Vejchodský.

3.1 Algebraic backward error

Given an approximation x̂ to the solution x of (3.3), in (algebraic) backward
error analysis we look for the perturbations E and f , smallest in a certain sense,
such that x̂ satisfies

(A + E)x̂ = b + f . (3.4)

The most familiar are the normwise relative backward error

min
E,f
{ε | (A + E)x̂ = b + f , ‖E‖ ≤ ε‖A‖, ‖f‖ ≤ ε‖b‖}

that can be analogously defined also for other norms, and the componentwise
relative backward error

min
E,f
{ε | (A + E)x̂ = b + f , |E| ≤ ε|A|, |f | ≤ ε|b|} ,

where | · | stands for the (elementwise) absolute value. The minimizers of these
relative backward errors are presented in Rigal and Gaches [1967], respectively
in Oettli and Prager [1964]. We will also consider the special case of (3.4) with
f = 0, i.e. we look for the perturbation E, such that

(A + E)x̂ = b . (3.5)

Throughout the chapter we will refer several times to the following backward
error perturbations. The minimizer of the normwise relative backward error is

r̂ x̂T

‖x̂‖2
= arg min

E
{ε | (A + E)x̂ = b, ‖E‖ ≤ ε‖A‖} , (3.6)

where r̂ is the residual b−Ax̂. For a symmetric positive definite A, we have

r̂ x̂TA

‖x̂‖2
A

= arg min
E

{ε | (A + E)x̂ = b, ‖E‖A ≤ ε‖A‖A} ; (3.7)

see Rigal and Gaches [1967]. The rank-1 minimizers in (3.6), (3.7) are gener-
ally nonsymmetric. Following [Bunch et al., 1989, Theorem 2], the symmetric
perturbation matrix that has the minimal Frobenius norm among all symmetric
perturbation matrices satisfying (3.5) with a symmetric matrix A is

r̂ x̂T + x̂ r̂T

‖x̂‖2
− (x̂T r̂)

‖x̂‖4
x̂ x̂T =

arg min
E

{
ε | (A + E)x̂ = b, A = AT, E = ET, ‖E‖F ≤ ε‖A‖F

}
. (3.8)
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The standard use of the algebraic backward error consists in bounding the
norm of the forward error x− x̂. We now present an example of such bound; see,
e.g., [Higham, 2002, Section 7.1]. Consider (3.4) with ‖E‖ ≤ ε‖A‖, ‖f‖ ≤ ε‖b‖
and assume that ε‖A−1‖ ‖A‖ < 1. Then simple manipulations show that

x− x̂ = A−1
(
Ex− f − E(x− x̂)

)
,

‖x− x̂‖ ≤ ‖A−1‖
(
‖E‖ ‖x‖+ ‖f‖+ ‖E‖ ‖x− x̂‖

)
,

≤ ε‖A−1‖
(
‖A‖ ‖x‖+ ‖b‖+ ‖A‖ ‖x− x̂‖

)
,

and

‖x− x̂‖ ≤ ε

1− ε‖A−1‖ ‖A‖
(
‖A−1‖ ‖A‖ ‖x‖+ ‖A−1‖ ‖b‖

)
.

Using ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ and denoting by κ(A) ≡ ‖A−1‖ ‖A‖, we have

‖x− x̂‖
‖x‖ ≤ 2εκ(A)

1− εκ(A)
.

However, the highly desirable componentwise forward error analysis that would
allow to bound the individual components of the algebraic error and, consequent-
ly, to estimate the distribution of the error in the solution of the original PDE
problem over the domain is not available.

3.2 Backward error and transformation of the

discretization bases

In this section we interpret the perturbations E, f (constructed for a given vec-
tor x̂) as transformations of the discretization basis Φ, such that the system (3.4)
corresponds to the algebraic formulation of the problem (3.2) with transformed
discretization basis and test functions; cf. [Gratton et al., 2013, Section 3] and
[Papež et al., 2014, Section 3].

Consider a transformed discretization basis functions Ψ = {ψ1, . . . , ψN} ⊂ Vh,
with the transformation from the original basis functions φ1, . . . , φN given by a
square matrix D,

ψj = φj +
N∑

`=1

(D)`jφ` , j = 1, . . . , N , Ψ = Φ(I + D) , (3.9)

and the transformed test functions X = {χ1, . . . , χN} with the transformation
given by a square matrix G,

χi = φi +
N∑

k=1

(G)kiφk , i = 1, . . . , N , X = Φ(I + G) .

It is natural to assume that I + D and I + G are nonsingular, so that Ψ and X
are bases of Vh.

Given a vector y, let the Galerkin solution uh of (3.2) satisfy

uh = Φx = Ψy = Φ(I + D)y (3.10)
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for some (unknown) matrix D. Consider the Galerkin discretization (3.2) with
the basis functions Ψ, uh = Ψy, and with the test functions X determined by
some matrix G. This results in the system of linear algebraic equations

Ay = b , (3.11)

where

(A)ij = a(ψj, χi) = a(φj +
N∑

`=1

(D)`jφ` , φi +
N∑

k=1

(G)kiφk)

= a(φj, φi) + a(
N∑

`=1

(D)`jφ` , φi) + a(φj,
N∑

k=1

(G)kiφk)

+ a(
N∑

`=1

(D)`jφ` ,
N∑

k=1

(G)kiφk)

= (A)ij +
N∑

`=1

(A)i`(D)`j +
N∑

k=1

(G)ki(A)kj +
N∑

`=1

N∑

k=1

(G)ki(A)k`(D)`j ,

i.e.
A = A + AD + GTA + GTAD = (I + G)TA(I + D) .

For the right-hand side,

(b)i = `(χi) = `(φi +
N∑

k=1

(G)kiφk) = (b)i +
N∑

k=1

(G)ki(b)k ,

i.e.
b = (I + G)Tb .

Given an approximation x̂ to x and perturbations E, f satisfying (3.4), we
will associate the exact solution x̂ of (3.4) with the Galerkin solution uh of (3.2).
For this purpose we need to determine transformation matrices D, G by setting

A + E = A = (I + G)TA(I + D) , (3.12)

b + f = b = (I + G)Tb , (3.13)

with x̂ = y (see (3.10), (3.11)) the exact algebraic solution of (3.4) representing
the coefficients of the Galerkin solution uh of (3.2). By rearranging (3.12) and
(3.13),

E = AD + GTA + GTAD , (3.14)

f = GTb . (3.15)

Note that if (3.4), (3.12) and (3.13) hold, then

(I + D)x̂ = x, or equivalently Dx̂ = x− x̂ . (3.16)

We now focus on the existence and the uniqueness of transformations D,G
satisfying (3.12) and (3.13) for the given perturbations E, f such that

• E, f are general perturbations, or

• f = 0, or

• A and A + E are symmetric positive definite.
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3.2.1 General perturbations

Given x̂ and E, f satisfying (3.4), there are infinitely many couples of matrices
D,G satisfying (3.12)–(3.13). Indeed, G can be any matrix such that GTb = f
and (I + G) is invertible. Once such G is chosen, from (3.14) we get

D = A−1
(
I + GT

)−1 (
E−GTA

)
.

Given a norm ‖ · ‖� in the matrix space RN×N , G can be taken as a matrix with
the minimum norm mapping b to f , i.e.

GT = arg min
H
{‖H‖� | H b = f}.

The formula for the minimizer will be given in Section 3.2.5; see Theorem 3.2.
Following the discussion in [Papež et al., 2014, Remark 3 on p. 100], we note

that the inverse A−1 is, in general, dense, and therefore we have no control on
the sparsity of the transformation matrix D. Consequently, the transformed
basis functions Ψ = Φ(I+D) have global supports even for the locally supported
functions represented by Φ.

3.2.2 Perturbations with f = 0

In the special case when the right-hand side is considered unchanged, i.e. f = 0,
it is natural to set G = 0 and

A + E = A (I + D) .

The unique matrix D that satisfies this equality is D = A−1E. This case is con-
sidered in Gratton et al. [2013]; Papež et al. [2014], where the inexact solution
of the algebraic system arising from the discretization is interpreted as transfor-
mation of the discretization basis functions with the test functions unchanged,
X = Φ.

For the rank-1 perturbation matrices E given by (3.6) or (3.7), the transfor-
mation matrix D = A−1E is also rank-1 with the columns equal to the scaled
algebraic error,

D =
(x− x̂) x̂T

‖x̂‖2
and D =

(x− x̂) x̂TA

‖x̂‖2
A

, (3.17)

respectively. For a symmetric perturbation E = ET , e.g. given by (3.8), the
associated transformation matrix D is in general not symmetric (see the numerical
examples in Section 3.5), but, assuming that A is SPD, it is symmetric with
respect to the inner product induced by A,

(Dx,y)A = yTADx = yTEx = yTETx = yTDTAx = (x,Dy)A .

3.2.3 Perturbations preserving symmetry

In this section we restrict ourselves to the case where the bilinear form a(·, ·) in
(3.1) is symmetric, bounded and V -elliptic, and therefore A in (3.3) is a symmet-
ric positive definite matrix. For A SPD it is natural to consider perturbations E
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such that A+E remains also SPD. In order to preserve symmetry, it makes sense
to set G = D, i.e. to have the same discretization and test bases Ψ = X , and
search for D satisfying

(I + D)T A (I + D) = A + E , (3.18)

(I + D)Tb = b + f . (3.19)

As we show below, the existence of D satisfying (3.18)–(3.19) is not guaranteed.
Multiplying (3.18) by (A + E)−1/2 from the left and from the right gives

(A + E)−1/2(I + D)TA(I + D)(A + E)−1/2 = I.

Denoting U ≡ (A + E)−1/2(I + D)TA1/2, this gives UUT = I, i.e. U must be
orthogonal. Equivalently, D satisfies (3.18) if and only if

I + D = A−1/2UT (A + E)1/2 ,

where U is any orthogonal matrix. Plugging the expression for I + D into (3.19)
gives

(A + E)1/2UA−1/2b = b + f .

Multiplying by (A + E)−1/2 from the left,

UA−1/2b = (A + E)−1/2 (b + f) .

Clearly, an orthogonal matrix U satisfying the last equation exists if and only if
the vectors A−1/2b and (A + E)−1/2(b + f) have the same Euclidean norm, i.e.,
if and only if

bTA−1b = (b + f)T (A + E)−1(b + f) .

This is equivalent to

bTx = (b + f)T x̂ , or, equivalently, ‖x‖A = ‖x̂‖A+E ,

which, in general, does not hold. Moreover, existence of D satisfying (3.18)–
(3.19) for given perturbations E, f cannot be verified without knowledge of bTx
or ‖x‖A.

If, on the other hand, there exists a matrix D satisfying (3.18) and (3.19),
then it is not unique. It is of the form D = A−1/2UT (A + E)1/2 − I where U is
an orthogonal matrix satisfying UA−1/2b = (A + E)−1/2(b + f).

3.2.4 Symmetric perturbation minimal with respect to
the energy norm

In the previous subsection it was shown that not every perturbations E, f in (3.4)
such that A + E is SPD can be interpreted as stemming from the transformation
of the bases with D = G. For a given approximation x̂ there exists a set of
perturbations E, f satisfying (3.4) and (3.18)–(3.19). In this subsection we look
for a perturbation, minimal in an appropriate sense, over this set. Hereafter, we
assume that A is symmetric positive definite.

In [Gratton et al., 2013, Section 3], the authors propose to measure the per-
turbation E in (3.5) using the norm ‖E‖A,A−1 ≡ max

‖v‖A=1
‖Ev‖A−1 . When the
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same transformation of both the discretization and test bases is considered and
E satisfies (3.18), the quantity ‖E‖A,A−1 can be interpreted as

‖E‖A,A−1 = max
v,w 6=0

∣∣wT [(I + D)A(I + D)−A] v
∣∣

‖v‖A‖w‖A

= max
v,w 6=0

|a(Ψv,Ψw)− a(Φv,Φw)|
‖v‖A‖w‖A

,

with Ψ = Φ(I + D). Therefore ‖E‖A,A−1 represents the distance between the
bilinear forms a(Φv,Φw) and a(Ψv,Ψw) on

(
RN , ‖ · ‖A

)
. Following Gratton

et al. [2013] we refer to ‖E‖A,A−1 as the energy norm of E. Simple algebraic
manipulation shows that ‖E‖A,A−1 = ‖A−1/2EA−1/2‖.

The minimal norm ‖E‖A,A−1 over the set of perturbations E, f satisfying (3.4)
and (3.18)–(3.19) is determined as

min
D∈D(x̂,x−x̂)

‖(I + D)TA(I + D)−A‖A,A−1 ,

where D(u,v) ≡
{
D ∈ RN×N |Du = v

}
. The minimization problem is solved in

the following theorem.

Theorem 3.1. Let x̂ and x be arbitrary and let A be symmetric positive definite.
Define

x1 ≡ x− x̂TAx

‖x̂‖2
A

x̂ , x̂1 ≡ x̂− x̂TAx

‖x‖2
A

x .

Providing x1 6= 0, x̂1 6= 0,

µ(x̂,x) ≡ min
D∈D(x̂,x−x̂)

‖(I + D)TA(I + D)−A‖A,A−1 =

∣∣∣∣
‖x‖2

A

‖x̂‖2
A

− 1

∣∣∣∣ , (3.20)

and the minimum is achieved for

D̂ ≡ (x− x̂)x̂TA

‖x̂‖2
A

+

(
x̂1

‖x̂1‖A
− x1

‖x1‖A

)
xT1 A

‖x1‖A
. (3.21)

Moreover, I + D̂ is nonsingular.

The proof of Theorem 3.1 is rather technical and it is given in Appendix 3.A. The
perturbation Ê, f̂ satisfying (3.4) and ‖Ê‖A,A−1 = µ(x̂,x) is given by plugging
(3.21) into (3.18) and (3.19).

3.2.5 Minimal transformation of the discretization basis

For transformation of the discretization basis we derived the condition (3.16), i.e.
Dx̂ = x − x̂ or, equivalently, D ∈ D(x̂,x− x̂). A natural question is to find a
minimal transformation such that (3.16) is satisfied. This is resolved using the
following theorem.

Theorem 3.2. Let u, v be arbitrary, let ‖·‖� be a vector norm with the associated
matrix norm denoted in the same way. Then the minimizer of ‖C‖� over all
matrices C satisfying Cu = v, i.e., C ∈ D(u,v), is given by

C̃ ≡ arg min
C∈D(u,v)

‖C‖� = vzT , (3.22)
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where z is a vector dual to u with respect to the norm ‖ · ‖�, i.e.,

zTu = ‖z‖D‖u‖� = 1, where ‖z‖D = max
w 6=0

∣∣zTw
∣∣

‖w‖�
. (3.23)

Proof. Let C ∈ D(u,v). Then

‖C‖� = max
w 6=0

‖Cw‖�
‖w‖�

≥ ‖Cu‖�
‖u‖�

=
‖v‖�
‖u‖�

.

Now, let z satisfy (3.23). Existence of such z is guaranteed by the Hahn–Banach
theorem; for the proof in finite-dimensional setting see, e.g., [Horn and Johnson,
2013, Theorem 5.5.9]. It holds

‖C̃‖� = max
w 6=0

‖C̃w‖�
‖w‖�

= max
w 6=0

|zTw|
‖w‖�

‖v‖� =
‖v‖�
‖u‖�

.

Hence, ‖C̃‖� =
‖v‖�
‖u‖�

≤ ‖C‖� for any C ∈ D(u,v) and C̃ satisfies (3.22).

In addition to Theorem 3.2, it was shown in [Dennis and Schnabel, 1996, Theo-
rem 8.1.1] that the unique minimizer (3.22) for the Frobenius norm ‖ · ‖� = ‖ · ‖F
is given by

C̃ =
vuT

‖u‖2
. (3.24)

Since z = u/‖u‖2 is the vector dual to u with respect to the Euclidean norm ‖ ·‖,
(3.24) is also the solution of (3.22) when ‖ · ‖� = ‖ · ‖.

Applying Theorem 3.2 for finding the minimal transformation D ∈ D(x̂,x−x̂)
of the discretization basis is straightforward. Setting u = x̂, v = x− x̂ in (3.24)
gives

D̃ =
(x− x̂)x̂T

‖x̂‖2
;

cf. (3.17). The perturbation E given by (3.6) therefore satisfies E = AD̃, which
means that it corresponds to the transformation of the discretization basis that
has the minimal Euclidean norm and the minimal Frobenius norm among all
transformation matrices in D(x̂,x − x̂). Similarly, one can show that the per-
turbation matrix E given by (3.7) corresponds to the transformation of the basis
minimal with respect to the norm ‖ · ‖A .

Remark: When a nonzero perturbation f of the right-hand side in (3.4) is given

and one looks for the matrix G̃ with the minimal norm satisfying G̃Tb = f (see
Section 3.2.1), Theorem 3.2 gives

G̃T = arg min
H∈D(b,f)

‖H‖� = f gT ,

where g is a vector dual to b with respect to the norm ‖ · ‖�. Moreover,

arg min
H∈D(b,f)

‖H‖F = arg min
H∈D(b,f)

‖H‖ = f
bT

‖b‖2
.
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3.3 Inexact discrete Green’s function

The Green’s function and the discrete Green’s function map the right-hand side
of the considered PDE to its (weak) solution, respectively to the Galerkin solution
of the discretized problem. They are used in literature for proving maximum and
discrete maximum principles of the associated operator; see, e.g., [Protter and
Weinberger, 1984, Section 7] and Ciarlet [1970]. In this section we introduce the
inexact discrete Green’s function that maps the right-hand side to the computed
approximation and that can be expressed using the algebraic backward error.

We restrict ourselves to the Poisson problem with homogeneous Dirichlet
boundary condition given in the weak form (cf. (3.1)): Find u ∈ V ≡ H1

0 (Ω)
such that

a(u, v) = `(v) ∀v ∈ V, (3.25)

a(u, v) ≡
∫

Ω

∇u · ∇v , `(v) ≡
∫

Ω

fv ,

where f ∈ L2(Ω) and Ω is a domain with a Lipschitz boundary. The results can be
extended to more general linear second-order elliptic problems imposing further
assumptions on the data; see, e.g., [Protter and Weinberger, 1984, Section 7].

By the Lax–Milgram lemma (Lax and Milgram [1954]), the solution u ∈ V
of (3.25) exists and it is unique, and we can define the Green’s operator

G̃ : L2(Ω)→ V , G̃(f) = u. The existence, uniqueness and other properties of
this operator are described and proved, e.g., in Nečas [1967]. The Green’s oper-
ator can often (see, e.g., [Protter and Weinberger, 1984, Section 7]) be expressed
using the Kirchhoff–Helmholtz representation, for y ∈ Ω,

u(y) =

∫

Ω

f(x)G(x, y) dx , (3.26)

where the kernel G(x, y) is called the Green’s function. Existence of the repre-
sentation (3.26) requires, in general, additional requirement on the regularity of
the source term f .

The discrete Green’s function is defined in analogy with the infinite-dimen-
sional case. Let Vh be a finite-dimensional subspace of V . We assume that Vh
is a subspace of continuous functions, Vh ⊂ C(Ω), which holds for all common
conforming discretizations of (3.25). We recall that uh ∈ Vh denotes the Galerkin
solution of (3.25); see (3.2). The discrete Green’s function Gh,y(x) ≡ Gh(x, y)
satisfies, for all y ∈ Ω, Gh,y ∈ Vh , and

uh(y) =

∫

Ω

f(x)Gh(x, y) dx ; (3.27)

see, e.g., Ciarlet [1970]. Equivalently, the discrete Green’s function Gh,y ∈ Vh can
be defined (see, e.g., Drăgănescu et al. [2005]) as the solution of

a(vh, Gh,y) = vh(y) ∀vh ∈ Vh . (3.28)

The discrete Green’s function is independent of the chosen discretization basis
of Vh. Given a basis Φ and the associated stiffness matrix A defined in (3.3),
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Gh(x, y) satisfies

Gh(x, y) =
N∑

i=1

N∑

j=1

φi(y)(A−1)ij φj(x) . (3.29)

Indeed, since Gh,y ∈ Vh, for some coefficients dj(y)

Gh,y(x) =
N∑

j=1

dj(y)φj(x) .

From (3.28),

φi(y) = a(φi(x), Gh,y(x))

= a(φi(x),
N∑

j=1

dj(y)φj(x))

=
N∑

j=1

dj(y)(A)ji i = 1, . . . , N .

Multiplying this equality by A−1 gives

dk(y) =
N∑

i=1

φi(y)(A−1)ik .

For ease of notation we will write symbolically

Gh(x, y) = Φ(y)A−1ΦT (x) ≡
N∑

i=1

N∑

j=1

φi(y)(A−1)ij φj(x) .

Similarly, one can show that when two different bases Ψ,X of Vh are used in
the discretization, giving the stiffness matrix A, (A)ij = a(ψj, χi), i, j = 1, . . . , N ,
(see Section 3.2), the discrete Green’s function has the form

Gh(x, y) = Ψ(y)
(
A
)−1X T (x) . (3.30)

Now, consider an approximation x̂ ≈ x to the solution of the stiffness sys-
tem (3.3) and the associated approximate function

ûh = Φx̂ ≈ uh = Φx .

Analogously to (3.27), we look for the inexact discrete Green’s function Ĝh(x, y)
such that

ûh(y) =

∫

Ω

f(x) Ĝh(x, y) dx . (3.31)

Please note, that such function is not uniquely determined, which is in contrast
to the uniqueness of the discrete Green’s function Gh(x, y). Indeed, similarly

to (3.29), a function Ĝh(x, y) satisfying (3.31) is given by

Ĝh(x, y) = Φ(y)(A + E)−1ΦT (x) , (3.32)
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for any perturbation E satisfying (A + E) x̂ = b, where E is not unique.
Then (3.31) and (3.27) give

(ûh − uh)(y) =

∫

Ω

f(x)
(
Ĝh(x, y)−Gh(x, y)

)
dx

and using (3.32) and (3.29), respectively,

Ĝh(x, y)−Gh(x, y) = Φ(y)
(
(A + E)−1 −A−1

)
ΦT (x) . (3.33)

We discuss in the next section how to express the term (A + E)−1 −A−1 and use
the expression in estimating the algebraic error.

3.4 Estimating the algebraic error via the Fré-

chet derivative

In this section we consider, for a given approximation x̂, the algebraic backward
error with the perturbation of the system matrix only; see (3.5). Backward error
with perturbation of matrix as well as the right-hand side is discussed in the
remark at the end of the section.

The (forward) algebraic error can be written as

x̂− x = (A + E)−1b−A−1b (3.34)

Assuming the convergence of the (Neumann) series,

(A + E)−1 = (I + A−1E)−1A−1 =
∞∑

k=0

(−A−1E)kA−1 .

Then, for some ` ≥ 1,

x̂− x ≈
∑̀

k=0

(−A−1E)kA−1b −A−1b =
∑̀

k=1

(−A−1E)kA−1 b . (3.35)

Especially, for ` = 1,

x̂− x = −A−1EA−1b +O(‖E‖), (3.36)

where Lg(A,E) = −A−1EA−1 is the derivative1 of the function g(z) = z−1 at A
in the direction E.

First, consider the rank-1 perturbation matrix given by (3.6), i.e.

E =
(b−Ax̂)x̂T

‖x̂‖2
.

1Assuming the differentiability of a matrix function g, the Fréchet derivative of g at A is a
bounded linear mapping E 7→ Lg(A,E) such that

g(A + E)− g(A) = Lg(A,E) +O(‖E‖).
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Then −A−1EA−1b is nothing but the scaling of the error x̂− x,

−A−1EA−1b = (x̂− x)
x̂Tx

‖x̂‖2
. (3.37)

Similarly, for any rank-1 matrix E = uvT in (3.5) we can use the Sherman–
Morrison formula (see Sherman and Morrison [1950]) to write

x̂− x =
[
(A + uvT )−1 −A−1

]
b

= −A−1uvTA−1b

1 + vTA−1u
=

−1

1 + vTA−1u
·A−1uvTA−1b .

Therefore, for a rank-1 perturbation E, we can express the algebraic error x̂− x
using the Fréchet derivative as

x̂− x = αA−1EA−1b

with some scaling factor α. For E given by (3.7), the factor

α = −‖x̂‖
2
A

x̂Tb

is computable without the knowledge of the exact solution x; cf. (3.37).
Evaluation of the term −A−1EA−1b requires, for a general E, two solutions

of linear systems with the matrix A. The simplest idea reducing the evaluation
cost is to replace A−1b by the computed vector x̂ ≈ x = A−1b, giving

−A−1EA−1 b ≈ −A−1E x̂ .

From (3.5), E x̂ = b−Ax̂ = r̂, and

−A−1E x̂ = −A−1r̂ .

Therefore, approximating −A−1EA−1 b in this way leads to the solution of the
system Ay = −r̂.

Another idea is to compute −A−1EA−1b using the approaches described in
the literature for computing the Fréchet derivative of logarithm or exponential
function. The Fréchet derivative can be expressed via power series. Assuming
that function g has a power series expansion g(z) =

∑∞
k=0 akz

k with radius of
convergence r, then the Fréchet derivative of g at A, ‖A‖ < r, in the direction E

Lg(A,E) =
∞∑

k=0

ak

k∑

j=0

Aj−1EAk−j ;

see [Al-Mohy and Higham, 2009, Thm. 3.1]. A recurrence for computing the
series above is proposed in [Al-Mohy and Higham, 2009, Thm. 3.2]. However,
power series for g(z) = z−1 have typically very small radii of convergence and
they converge slowly.

Alternatively one can use a block matrix approach taken from [Mathias, 1996,
Thm. 2.1]. For a non-singular matrix A

[
A E
0 A

]−1

=

[
A−1 −A−1EA−1

0 A−1

]
.
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Multiplying by the vector [ 0
b ] from the right

[
A E
0 A

]−1 [
0
b

]
=

[
−A−1EA−1b

A−1b

]
,

or equivalently
[
A E
0 A

] [
y
x

]
=

[
0
b

]
, y = −A−1EA−1b , x = A−1b .

Since the matrix E is determined by the computed approximation x̂ to the solu-
tion x, this system cannot be solved all at once. Using its block upper triangular
structure one can use back substitution to get the following algorithm:

1. Solve Ax = b for an approximation x̂ ≈ x ;

2. Construct E such that (A + E)x̂ = b ;

3. Solve Ay + E x̂ = 0 for an approximation ŷ ≈ x̂− x .

Since E x̂ = r̂, the construction of the perturbation matrix E can be avoided, giv-
ing the following algorithm that is nothing but a single step of iterative refinement
proposed in [Wilkinson, 1963, p. 121]:

1. Solve Ax = b for an approximation x̂ ≈ x ;

2. Compute the residual r̂ = b−Ax̂ ;

3. Solve Ay = −r̂ for an approximation ŷ ≈ x̂− x .

Remark: In the previous discussion, we considered only the perturbation of the
system matrix as in (3.5). Whenever the both sides of the equation are perturbed,

(A + E)x̂ = b + f ,

the expression for the algebraic error based on the above presented idea is more
complicated. Analogously to (3.34) one can write

x̂− x = (A + E)−1(b + f)−A−1b .

With a simple manipulation

x̂− x =
[
(A + E)−1 −A−1

]
b + (A + E)−1f ,

or
x̂− x =

[
(A + E)−1 −A−1

]
(b + f) + A−1f .

Replacing [(A + E)−1 −A−1] by −A−1EA−1 then gives two approximations for
the algebraic error

x̂− x ≈ −A−1EA−1b + (A + E)−1f ,

x̂− x ≈ −A−1EA−1(b + f) + A−1f .

However, the approximation of the algebraic error using these formulas is even
more costly than in the case of perturbation of the system matrix only discussed
above.
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3.5 Numerical illustrations

For numerical illustrations we consider the one-dimensional test example consid-
ered in [Papež et al., 2014, Section 2], i.e., the Poisson problem on the domain
Ω ≡ (0, 1) with the exact solution u = exp(−5(x−0.5)2)− exp(−5/4) discretized
on a uniform partition with 19 inner nodes. As in Papež et al. [2014] we substi-
tute for x̂ the approximation given after 8 steps of the CG iteration steps starting
with the zero initial vector. Consider the nonsymmetric rank-1 perturbation E
given by (3.6) and the symmetric perturbation given by (3.8) that we denote here
by F. Note, that if the approximation x̂ is orthogonal to its associated residual r̂,
i.e. x̂T r̂ = 0, then F = E + ET . This happens, e.g., when x̂ is given by the CG
method starting with zero initial guess, which is our case.

When we consider the transformation of the discretization basis only (see
Section 3.2.2), the transformation matrices are

DE ≡ A−1E ,

DF ≡ A−1F .

Recall that DE is the minimal transformation with respect to the Euclidean and
Frobenius norm (see Section 3.2.5) and that DF is (generally) nonsymmetric.
The norms of the perturbation and transformation matrices are in our example

‖E‖ = 3.30× 10−1, ‖DE‖ = 1.47× 10−2,

‖E‖F = 3.30× 10−1, ‖DE‖F = 1.47× 10−2,

‖F‖ = 3.30× 10−1, ‖DF‖ = 6.68× 10−1,

‖F‖F = 4.66× 10−1, ‖DF‖F = 6.68× 10−1.

The matrices E, DE and F, DF are depicted in Figure 3.1 and 3.2, respectively.
Figure 3.3 illustrates the difference of a discretization basis function transformed
as in (3.9) using DE, DF.
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Figure 3.1: The perturbation matrix E (left) and the transformation matrix DE

(right) (with the entries visualized using the MATLAB surf command). The
right vertical axis is scaled by 10−3.
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Figure 3.2: The perturbation matrix F (left) and the transformation matrix DF

(right) (with the entries visualized using the MATLAB surf command).
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Figure 3.3: The difference ψ10−φ10 for ψ10 given by (3.9) with the transformation
matrix DE (left) and for DF (right). The left vertical axis is scaled by 10−3.
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Figure 3.4: The symmetric perturbation matrix Ê given by (3.18) minimal with

respect to the energy norm (left) and the associated transformation matrix D̂
(right) given by (3.21). The entries are visualized using the MATLAB surf

command. The left vertical axis is scaled by 10−4.
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Figure 3.4 depicts the symmetric perturbation matrix Ê minimal with respect
to the energy norm discussed in Section 3.2.4; recall that here the (generally)
nonzero perturbation of the right-hand side in (3.4) and the same transformation
of discretization basis and test functions are considered, Ψ = X . Note that while
the entries of Ê are smaller than the entries of the matrices E, F considered above,
some of the entries of the associated transformation matrix D̂ given by (3.21) are
significantly larger than the entries of DE, DF.

The Green’s function G(x, y) for the one-dimensional Poisson problem is given

in Figure 3.5. Figure 3.6 then depicts the difference Gh(x, y)− Ĝh(x, y) between
the discrete Green’s function (3.29) and the inexact discrete Green’s function
(3.32) for the perturbations E, F considered above.
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Figure 3.5: The Green’s function G(x, y) for the one-dimensional Poisson prob-
lem.
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Figure 3.6: The difference Gh(x, y)− Ĝh(x, y) (see (3.33)) for the perturbation E
(left) and for the symmetric perturbation F (right).
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Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967.
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3.A Proof of Theorem 3.1

The simple algebraic manipulation shows that

‖(I + D)TA(I + D)−A‖A,A−1 = ‖A−1/2(I + D)TA(I + D)A−1/2 − I‖
= ‖(I + A1/2DA−1/2)T (I + A1/2DA−1/2)− I‖ .

We denote

R ≡ I + A1/2DA−1/2 . (3.38)

For D ∈ D(x̂,x− x̂), it holds

RA1/2 x̂ = (I + A1/2DA−1/2)A1/2 x̂ = A1/2(I + D)x̂ = A1/2 x ,

i.e. R ∈ D(A1/2 x̂,A1/2 x), and we can write (3.20) as

min
D∈D(x̂,x−x̂)

‖(I + D)TA(I + D)−A‖A,A−1 = min
R∈D(A1/2 x̂,A1/2 x)

‖RTR− I‖ .

For ease of notation, write

s ≡ A1/2 x̂, y ≡ A1/2 x .

Define

s1 ≡ s− sTy

‖y‖2
y , y1 ≡ y − sTy

‖s‖2
s .

There holds s1 = A1/2 x̂1, y1 = A1/2 x1. Therefore, providing x1 6= 0, x̂1 6= 0, the
vectors y1 and s1 are nonzero. We now show that

min
R∈D(s,y)

‖RTR− I‖ =

∣∣∣∣
‖y‖2

‖s‖2
− 1

∣∣∣∣ =

∣∣∣∣
‖x‖2

A

‖x̂‖2
A

− 1

∣∣∣∣
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and that

arg min
R∈D(s,y)

‖RTR− I‖ = R̂ ≡ I +
(y − s)sT

‖s‖2
+

(
s1

‖s1‖
− y1

‖y1‖

)
yT1
‖y1‖

. (3.39)

Direct calculation shows that R̂ ∈ D(s,y). Indeed, since yT1 s = 0, it holds

R̂s =

(
I +

(y − s)sT

‖s‖2
+

(
s1

‖s1‖
− y1

‖y1‖

)
yT1
‖y1‖

)
s =

(
I +

(y − s)sT

‖s‖2

)
s = y .

For any R ∈ D(s,y), there holds

‖RTR− I‖ = max
v 6=0

∣∣vT
(
RTR− I

)
v
∣∣

‖v‖2
≥
∣∣sT
(
RTR− I

)
s
∣∣

‖s‖2
=

∣∣∣∣
‖y‖2

‖s‖2
− 1

∣∣∣∣ .

We proceed by showing that

‖R̂T R̂− I‖ =

∣∣∣∣
‖y‖2

‖s‖2
− 1

∣∣∣∣ .

Let v be an arbitrary vector of RN . The vectors s and y1 form an orthogonal
basis of U ≡ span {s,y} and one can write v = u1 + u2 + u3, with u1 = αs,

u2 = βy1, and u3 orthogonal to U . The construction of R̂ gives

R̂u1 = αR̂s = αy ,

R̂u2 = β

(
I +

(y − s)sT

‖s‖2
+

(
s1

‖s1‖
− y1

‖y1‖

)
yT1
‖y1‖

)
y1 = β

‖y1‖
‖s1‖

s1 ,

R̂u3 = u3 .

Then we have

uT2
(
R̂T R̂− I

)
u1 = αβ

‖y1‖
‖s1‖

sT1 y = 0 , (3.40)

uT2
(
R̂T R̂− I

)
u2 = β2

(‖y1‖2

‖s1‖2
‖s1‖2 − ‖y1‖2

)
= 0 , (3.41)

uT3
(
R̂T R̂− I

)
u3 = ‖u3‖2 − ‖u3‖2 = 0 , (3.42)

uT3
(
R̂T R̂− I

)
(u1 + u2) = uT3

(
R̂ (u1 + u2)− (u1 + u2)

)
= 0 , (3.43)

where in the last equality we used the fact that R̂ (u1 + u2) ∈ U and u3 is
orthogonal to U . Collecting equalities (3.40)–(3.43), infer

∣∣vT
(
R̂T R̂− I

)
v
∣∣

‖v‖2
=

∣∣(u1 + u2 + u3)T
(
R̂T R̂− I

)
(u1 + u2 + u3)

∣∣
‖u1 + u2 + u3‖2

=

∣∣uT1
(
R̂T R̂− I

)
u1

∣∣
‖u1‖2 + ‖u2‖2 + ‖u3‖2

≤
∣∣uT1
(
R̂T R̂− I

)
u1

∣∣
‖u1‖2

=

∣∣sT
(
R̂T R̂− I

)
s
∣∣

‖s‖2
=

∣∣∣∣
‖y‖2

‖s‖2
− 1

∣∣∣∣ .
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Thus

‖R̂T R̂− I‖ = max
v 6=0

∣∣vT
(
R̂T R̂− I

)
v
∣∣

‖v‖2
=

∣∣∣∣
‖y‖2

‖s‖2
− 1

∣∣∣∣ .

Moreover, R̂ is nonsingular. Indeed, let v ∈ R and suppose R̂v = 0. Decompos-
ing v as before,

0 = R̂v = R̂(u1 + u2 + u3) = αy + β
‖y1‖
‖s1‖

s1 + u3.

Since y, s1 and u3 are orthogonal to each other, it holds α = β = 0 and u3 = 0,
and thus v = 0.

Finally, the formula (3.21) follows from (3.38) and (3.39), and the proof is
finished.
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4. Algebraic errors, error
indicators and adaptivity

A posteriori error analysis in numerical PDEs often aims at estimating discretiza-
tion error, which is then used in adaptive finite element schemes to refine dis-
cretization in the parts of the domain according to the values of the estimator.
Such refinement can reduce the norm of the discretization error at low cost in
comparison to uniform mesh refinement, and result in a close-to-uniform spatial
distribution of the error over the domain. However, the estimators are often
derived for the FEM discrete solution, i.e., assuming the exact solution of the
corresponding algebraic system. There is a growing body of work avoiding this
assumption; a thorough list of references with the discussion can be found, e.g.,
in the recent survey [Arioli et al., 2013, Section 4]. We will present one of the
possible approaches based on flux reconstruction techniques in Chapter 5 of the
thesis.

The impact of abandoning the assumption on the exact algebraic solution
onto the so-called residual-based error estimator, allowing its evaluation for a
computed approximation is investigated in Papež and Strakoš [2016]. This pa-
per is included in Section 4.1 below. In Section 4.2, we compare convergence
of the adaptive finite element numerical solution and the adaptively generated
meshes when using the error indicators evaluated for the (tightly approximated)
FEM discrete solution and the indicators evaluated for the approximations with
nonnegligible algebraic error.

4.1 Paper submitted to IMA Journal of Numer-

ical Analysis

The section includes the paper Papež and Strakoš [2016] submitted to IMA Jour-
nal of Numerical Analysis on May 18, 2016. The paper is currently in revi-
sion.

– 63 –



Galerkin orthogonality and the multiplicative

factors in the residual-based a posteriori error

estimator for total error∗

J. Papež† Z. Strakoš†

May 18, 2016

Abstract

A posteriori error analysis in numerical PDEs aims at providing suf-
ficiently accurate information about the distance of the numerically com-
puted approximation to the true solution. The information about the
error should be determined from the computed quantities without hidden
assumptions or uncomputable multiplicative factors. Using the standard
Poisson model problem, this short text examines subtleties of the residual-
based a posteriori error estimator for the discretization and total error.
In particular, we study the impact of abandoning the assumption on the
Galerkin orthogonality onto the estimator, allowing its evaluation at the
presence of the algebraic error.

Keywords: A posteriori error analysis, residual-based estimator, computable
error bound, finite element method, Galerkin orthogonality, inexact algebraic
solution.

MSC: 65N15, 65N22, 65N30, 65N50.

1 Introduction

Historically, most a posteriori analysis in numerical PDEs focuses on estimating
the discretization error, i.e., on the discrepancy between the exact solution of the
original infinite-dimensional formulation of the problem and the exact solution
of its discretized counterpart. This information is crucial for adaptivity, which
refines discretization in the parts of the domain where the estimator indicates a
large discretization error in order to achieve its close-to-uniform spatial distribu-
tion over the domain. Estimation of the discretization error is, however, linked
with the following philosophical as well as practical difficulty: the exact solu-
tion of the original problem is unknown, and, unless the algebraic computations
providing the coordinates of the discrete solution in the discretization basis are
performed exactly or with a negligible algebraic error, the exact solution of the

∗This work was supported by the ERC-CZ project LL1202.
†Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, 186 75

Prague, Czech Republic.
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discretized problem is also unknown. Near-to-exact algebraic computations can
be prohibitive due to extensive computational cost. Reaching exact algebraic
results can even be theoretically prohibitive. The eigenvalues of finite matrices,
e.g., are in principle (in general) uncomputable by any finite formula due to the
Abel–Galois theorem, and they can only be approximated iteratively. Moreover,
in case of highly non-normal matrices there is no forward error guarantee of the
accuracy of the computed eigenvalue approximations and we can guarantee the
backward error only. Due to the inexactness of algebraic computations, the
a posteriori error bounds should be based, from their derivation to their appli-
cation, on the available computed approximations to the solution of the discrete
problem. The present text discusses the subtleties one has to deal with while
estimating the discretization and the total error using a residual-based a poste-
riori error estimator; see, e.g., [2, 3, 4]. We focus on the relationship between
the estimator and the algebraic error. More specifically, we show that removing
the standard Galerkin orthogonality assumption, which is a prerequisite for a
mathematically rigorous application of the bound, means a nontrivial revision
of the published results.

We will use the following standard model problem. Let Ω ⊂ R2 be a polyg-
onal domain (open, bounded and connected set with a polygonal boundary).
We consider the Poisson problem with the homogeneous Dirichlet boundary
condition

find u : Ω→ R : −∆u = f in Ω, u = 0 on ∂Ω , (1.1)

where f : Ω → R is the source term. Hereafter we use the standard notation
for the Sobolev spaces. For D ⊂ Ω, L1(D) denotes the space of the (Lebesgue)
integrable functions in D, L2(D) denotes the space of the square integrable
functions in D, (w, v)D =

∫
D
v w denotes the L2-inner product on L2(D), and

‖w‖D = (w,w)
1/2
D denotes the associated L2-norm. We omit the subscripts for

D = Ω. Hk(Ω) denotes the Hilbert space of functions in L2(Ω) whose weak
derivatives up to the order k belong to L2(Ω). H1

0 (Ω) denotes the space of
functions in H1(Ω) with vanishing trace on the boundary ∂Ω.

Assuming f ∈ L2(Ω), the problem (1.1) can be written in the following weak
form

find u ∈ V ≡ H1
0 (Ω) : (∇u,∇v) = (f, v) for all v ∈ V . (1.2)

Let T be a conforming triangulation of the domain Ω, i.e., two distinct and
intersecting elements T1, T2 ∈ T share a common face, edge or vertex. Let
N denote the set of all nodes (i.e. the vertices of the elements of T ) while
Nint ≡ N\∂Ω denotes the set of the free nodes. By E we denote the set of all
edges of the elements of T and, similarly, Eint ≡ E\∂Ω. For any node z ∈ N ,
let ϕz be the corresponding hat-function, i.e., the piecewise linear function that
takes value 1 at the node z and vanishes at all other nodes. By ωz we denote
the support of ϕz which is equal to the patch ωz = ∪{T ∈ T |z ∈ T}. For an
element T ∈ T we denote hT ≡ diam(T ), similarly hz ≡ diam(ωz) denotes
the diameter of ωz, z ∈ N . By Vh ⊂ V we denote the space of the continuous
piecewise linear functions on the triangulation T vanishing on the boundary ∂Ω,
i.e. Vh ≡ span {ϕz|z ∈ Nint}. The discrete formulation of (1.2) then reads

find uh ∈ Vh : (∇uh,∇vh) = (f, vh) for all vh ∈ Vh . (1.3)

2
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The solution uh of (1.3) is called the Galerkin solution. Subtracting (1.3)
from (1.2) and using Vh ⊂ V , we get the Galerkin orthogonality

(∇(u− uh),∇vh) = 0 for all vh ∈ Vh . (1.4)

The difficulty in estimating the discretization error u− uh mentioned above
can be formulated as follows. Consider any estimator EST(·) that provides an
upper bound

|||u− uh||| ≤ EST(uh) , (1.5)

where ||| · ||| denotes an appropriate norm (for the model problem (1.1) typically
the energy norm |||w||| = ‖∇w‖1/2 = (∇w,∇w)1/2). In order to evaluate the
right-hand side of (1.5) we need uh that is not available. The common practice
is then replacing uh by the computed approximation uCh , giving the seemingly
easy solution

|||u− uh||| ≤ EST(uCh ) .

This inequality is, however, not guaranteed to hold without further justifica-
tion, that can be highly nontrivial or even impossible to achieve. In particular,
provided that

EST(uh) = inf
vh∈Vh

EST(vh) , (1.6)

the bound (1.5) does indeed lead to a guaranteed upper bound

|||u− uh||| ≤ EST(vh) for all vh ∈ Vh . (1.7)

Proving (1.6) can, however, represent a challenge. A rigorous incorporation of
the algebraic inaccuracy into the a posteriori error analysis that would allow
theoretically justified comparison of the discretization and algebraic error is a
difficult problem; see, e.g., [8, 12, 13] and [6, Section 7.1]. One can argue that
the continuity argument gives EST(uCh ) ≈ EST(uh) for uCh ≈ uh. However,
when solving practical problems one typically needs to estimate the error even
for uCh far from uh; see, e.g., [11, Conclusions], [9, 10].

In [3, Lemma 3.1] the bound on the total error is given in the form

‖∇(u− vh)‖2 ≤ C̃ · EST(vh) + 2 ‖∇(uh − vh)‖2 , (1.8)

where C̃ is stated to depend only on the minimal angle of the triangulation T ,
and vh ∈ Vh is arbitrary, i.e., it can account for inexact algebraic computations.
The proof refers for the case vh = uh, i.e., for estimating the discretization error,
to the paper [4]. The proof is completed by arguing that the general case (1.8)
follows via the triangle inequality. In the present paper we critically examine this
argument and revisit the derivation of (1.8) in a way that explicitly describes
the multiplicative factors, including the worst-case relationship to the infinite-
dimensional and the computed approximate solutions u and uCh respectively.

In the next section we recall the results from [4] on quasi-interpolation.
Section 3 presents the revision of the upper bound (1.8) on the total error and
gives its detailed proof that abandons the Galerkin orthogonality assumption.
Section 4 comments on the upper bound on the total error obtained by the
approach used in [2]. Numerical illustrations are present in Section 5, followed
by conclusions.
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2 Quasi-interpolation results

This section presents results from [4] used further in the text. We include them
here for completeness and self-consistency of the text. Denote by ψ a piecewise
linear function taking value 1 at the inner nodes z ∈ Nint and vanishing on
the boundary ∂Ω, ψ ≡ ∑z∈Nint

ϕz. Then ϕz/ψ, z ∈ Nint, represents in Ω a

partition of unity,
∑
z∈Nint

ϕz/ψ = 1 in Ω. Following [4], for a given w ∈ L1(Ω)

define the quasi-interpolation operator I : L1(Ω)→ Vh

Iw ≡
∑

z∈Nint

wzϕz , where wz ≡
(w,ϕz/ψ)

(1, ϕz)
.

The error w − Iw has a vanishing weighted average. Namely, for w,R ∈ L2(Ω)
and arbitrary numbers Rz ∈ R, z ∈ Nint ,

∫

Ω

R (w − Iw) =
∑

z∈Nint

∫

Ω

(R−Rz)(w − wzψ)(ϕz/ψ) ; (2.1)

see [4, Remark 2.4]. Since

∫

Ω

(w − wzψ)(ϕz/ψ) = 0 for all z ∈ Nint ,

the numbers Rz ∈ R , can be chosen arbitrarily. In particular, Rz can be chosen
as the mean value of R on ωz. Then

∫
ωz
|R−Rz|2 is minimal among all Rz ∈ R.

The following lemmas are stated and proved in [4] for a more general case.
Considering the model problem (1.1), we restrict ourselves to the case w ∈ H1

0 (Ω).
The multiplicative factors in the lemmas then depend on

I. the shape of ωz ,

II. the shapes of ωz∂Ω ≡ (ωz ∪ ωξ | z ∈ Nint, ξ ∈ N\Nint, ωz ∩ ωξ 6= 0) ,

III. the shape coefficients (
∫
ωz
ϕz/|ωz| | z ∈ Nint), where |ωz| stands for the

Lebesgue measure of ωz,

IV. the overlap

M1 ≡ max
z∈Nint

card{ξ ∈ N\Nint | ωz ∩ ωξ 6= 0} ,

V. the shape of the elements T ∈ T ,

VI. the value maxz∈N hz‖∇ϕz‖∞, where ‖ · ‖∞ denotes the L∞(Ω)-norm and
hz = diam(ωz) ,

VII. the value
M2 ≡ ess sup

x∈Ω
{h(x)/hT | x ∈ T ∈ T } ,

where h(x) ≡ max{hz | ϕz(x) > 0, z ∈ Nint}, hT = diam(T ) .
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The proofs of the lemmas use the Poincaré inequality on ωz and the Friedrichs
inequality on ωz∂Ω defined in II. In order to prove Lemma 2.2, the so-called
trace theorem (see, e.g., [4, Proposition 4.1]) is used on each element of the
triangulation T ∈ T ; the multiplicative factor then depends on the shape of the
elements; see V. The quantities maxz∈N hz‖∇ϕz‖∞ and M2 (see VI. and VII.)
are of the order one on a shape-regular mesh, where ‖∇ϕz|T ‖∞ ≈ h−1

T and
hz ≈ hT , T ∈ ωz. They deteriorate on a mesh consisting of triangles with small
inner angles, where small and large elements (in the sense of their diameter)
adjoint. In order to see the development of the argument, for clarity we present
the following two lemmas.

Lemma 2.1 ([4, Theorem 3.1, statement 1.]). There exists a multiplicative fac-
tor C > 0 depending on the triangulation T (more precisely on I.–IV.), but not
on the size of the elements hT , such that, for all R ∈ L2(Ω), for all w ∈ H1

0 (Ω)
and for arbitrary numbers Rz ∈ R, z ∈ Nint ,

∫

Ω

R (w − Iw) ≤ C‖∇w‖
{ ∑

z∈Nint

h2
z

∫

ωz

ϕz/ψ |R−Rz|2
}1/2

.

Lemma 2.1 is a consequence of the definition of the quasi-interpolation opera-
tor I; see (2.1).

Lemma 2.2 ([4, Theorem 3.2]). Let S ⊂ E. There exists a multiplicative factor
C > 0 depending on the triangulation T (more precisely on I.–VII.), but not on
the size of the elements hT , such that for all J ∈ L2(S) and for all w ∈ H1

0 (Ω),

∫

S

J (w − Iw) ≤ C‖∇w‖
(∑

T∈T
hT ‖J‖2S∩∂T

)1/2

.

Combining Lemmas 2.1 and 2.2 we get the final inequality.

Lemma 2.3 ([4, Corollary 3.1]). Let S ⊂ E. There exists a multiplicative factor
C1 > 0 depending on I.–VII. such that, for all J ∈ L2(S), for all R ∈ L2(Ω),
for all w ∈ H1

0 (Ω), and for arbitrary numbers Rz ∈ R, z ∈ Nint ,

∫

Ω

R (w − Iw) +

∫

S

J (w − Iw)

≤ C1‖∇w‖
{ ∑

z∈Nint

h2
z‖R−Rz‖2ωz

+
∑

T∈T
hT ‖J‖2S∩∂T

}1/2

.

The following lemma introduces a positive multiplicative factor Cintp that plays
a key role in our discussion on incorporating the algebraic error into the a pos-
teriori bound on the total error; see Section 3 and the numerical experiments
in Section 5.

Lemma 2.4 ([4, Theorem 3.1, statement 3.]). There exists a multiplicative
factor Cintp > 0 depending on the triangulation T (more precisely on I.–IV.
and VI.) such that, for all w ∈ H1

0 (Ω),

‖∇Iw‖ ≤ Cintp‖∇w‖ . (2.2)
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Remark 2.1. Using the proof of [5, Theorem 2.4] and the discussion in [5,
Example 2.3], we can get a better idea about the size of Cintp. For a shape-
regular mesh with maxz∈N hz‖∇ϕz‖∞ ≈ 2 (see VI.), there holds Cintp ≈ 6. In
general, as stated in [5], it may be very large for small angles in the triangulation.

For f ∈ L1(Ω) define the mean-value operator πωz
(f) ≡

∫
ωz
f/|ωz|. We

denote, for z ∈ N and for any subset Z ⊂ N ,

oscz ≡ |ωz|1/2‖f − πωz
f‖ωz

, osc(Z) ≡
(∑

z∈Z
osc2

z

)1/2

,

measuring the oscillations of f , i.e. the variations of the function f from the
mean value πωz

f on the subdomains ωz. Given vh ∈ Vh, define for E ∈ Eint and
any subset F ⊂ Eint the edge residuals

JE(vh) ≡ |E|1/2
∥∥∥∥
[
∂vh
∂nE

]∥∥∥∥
E

, J(vh, F ) ≡
(∑

E∈F
J2
E(vh)

)1/2

,

where [·] denotes the jump of a piecewise continuous function and nE denotes
the unit normal to E (for each E ∈ Eint the orientation of the unit normal is set
arbitrarily but fixed). The edge residual JE(vh), vh ∈ Vh, measures the jump of
the piecewise constant gradient ∇vh over the inner edge E. We set for brevity
osc ≡ osc(N ) and J(vh) ≡ J(vh, Eint). For a given vh ∈ Vh, we define the jump
function J (vh) ∈ L2(Eint) on the inner edges

J (vh)|E ≡
[
∂vh
∂nE

]
, E ∈ Eint . (2.3)

The Green’s formula (see, e.g., [7, p. 14]) gives for a domain D with a
Lipschitz continuous boundary ∂D and for v ∈ H2(D), w ∈ H1(D)

∫

D

∇v · ∇w = −
∫

D

∆v w +

∫

∂D

(
∂v

∂n∂D

)
w , (2.4)

where n∂D denotes the unit normal to ∂D pointing outwards. Let vh ∈ Vh
and T ∈ T . Then vh|T is a linear function, vh|T ∈ H2(T ) and ∆vh|T = 0.
Then, applying the Green’s formula (2.4) elementwise yields, for any vh ∈ Vh ,
w ∈ H1

0 (Ω),
∫

Ω

∇vh · ∇w =
∑

T∈T

∫

T

∇vh · ∇w =
∑

T∈T

(
−
∫

T

∆vh w +

∫

∂T

(
∂vh
∂n∂T

)
w

)

=
∑

E∈Eint

∫

E

[
∂vh
∂nE

]
w =

∫

Eint
J (vh)w . (2.5)

The results recalled in this section are used to prove the upper bound on the
total error in the next section.

3 Upper bound on the total error

Now we state the upper bound on the energy norm of the total error using the
residual-based a posteriori error estimator.
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Theorem 3.1. There exist triangulation-dependent positive multiplicative fac-
tors C1, Cintp, and C2 such that for the solution u of (1.2), the Galerkin solution
uh of (1.3), and an arbitrary vh ∈ Vh,

‖∇(u− vh)‖2 ≤ 2C2
1 C

2
2

(
J2(vh) + osc2

)
+ 2C2

intp‖∇(uh − vh)‖2 . (3.1)

In particular, C1 depends on I.–VII. (see Lemma 2.3), Cintp depends on I.–IV.
and VI. (see Lemma 2.4), and the factor C2 depends on the ratios h2

z/|ωz|,
z ∈ Nint, and hT /|E|, T ∈ T , E ∈ ∂T ∩ Eint .

Proof. We will use the standard expression for the norm

‖∇(u− vh)‖ = sup
0 6=w∈H1

0 (Ω)

1

‖∇w‖

∫

Ω

∇(u− vh) · ∇w . (3.2)

Let vh ∈ Vh and w ∈ H1
0 (Ω), w 6= 0, be arbitrary,

∫

Ω

∇(u− vh) · ∇w =

∫

Ω

∇(u− vh) · ∇(w − Iw) +

∫

Ω

∇(u− vh) · ∇Iw

=

∫

Ω

∇(u− vh) · ∇(w − Iw) +

∫

Ω

∇(u− uh) · ∇Iw

+

∫

Ω

∇(uh − vh) · ∇Iw .

It follows from the definition of the interpolation operator that Iw ∈ Vh. The
Galerkin orthogonality (1.4) gives

∫

Ω

∇(u− uh) · ∇Iw = 0.

Then
∫

Ω

∇(u− vh) · ∇w =

∫

Ω

∇(u− vh) · ∇(w − Iw) +

∫

Ω

∇(uh − vh) · ∇Iw

=

∫

Ω

∇u · ∇(w − Iw)−
∫

Ω

∇vh · ∇(w − Iw)

+

∫

Ω

∇(uh − vh) · ∇Iw .

Using the weak formulation (1.2) and the equality (2.5),

∫

Ω

∇(u− vh) · ∇w =

∫

Ω

f(w − Iw)−
∫

Eint
J (vh)(w − Iw)+

∫

Ω

∇(uh − vh) · ∇Iw .
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Then Lemma 2.3 with S = Eint, R = f , Rz = πωz
f, z ∈ Nint, J = −J (vh) gives

∫

Ω

∇(u− vh) · ∇w ≤ C1‖∇w‖
{∑

T∈T
hT ‖J (vh)‖2Eint∩∂T +

∑

z∈Nint

h2
z‖f − πωz

f‖2ωz

} 1
2

+

∫

Ω

∇(uh − vh) · ∇Iw

≤ C1C2‖∇w‖
{ ∑

E∈Eint
|E| ‖J (vh)‖2E +

∑

z∈Nint

|ωz| ‖f − πωz
f‖2ωz

} 1
2

+

∫

Ω

∇(uh − vh) · ∇Iw

= C1C2‖∇w‖
(
J2(vh) + osc2

)1/2
+

∫

Ω

∇(uh − vh) · ∇Iw .

Using the Cauchy-Schwarz inequality,
∫

Ω

∇(u− vh) · ∇w ≤ C1C2‖∇w‖
(
J2(vh) + osc2

)1/2
+ ‖∇Iw‖ ‖∇(uh − vh)‖ .

(3.3)
Dividing (3.3) by ‖∇w‖ and using Lemma 2.4,

1

‖∇w‖

∫

Ω

∇(u− vh) · ∇w ≤ C1C2

(
J2(vh) + osc2

)1/2
+
‖∇Iw‖
‖∇w‖ ‖∇(uh − vh)‖

≤ C1C2

(
J2(vh) + osc2

)1/2
+ Cintp‖∇(uh − vh)‖ .

Using the representation (3.2) of the energy norm, recall that w ∈ H1
0 (Ω) was

chosen arbitrarily,

‖∇(u− vh)‖ ≤ C1C2

(
J2(vh) + osc2

)1/2
+ Cintp‖∇(uh − vh)‖ .

Finally, we deduce (3.1) using the inequality (a+ b)2 ≤ 2a2 + 2b2.

We will now give another bound on the total error that will contain infor-
mation about the exact solution u of (1.2). It is useful for illustration of the
role of the factor Cintp in (3.1). Setting w ≡ u− vh ∈ H1

0 (Ω) in (3.3), we get

‖∇(u− vh)‖2 ≤ C1C2‖∇(u− vh)‖
(
J2(vh) + osc2

)1/2

+ ‖∇(Iu− Ivh)‖ ‖∇(uh − vh)‖ .

Dividing both sides by ‖∇(u− vh)‖,

‖∇(u− vh)‖ ≤ C1C2

(
J2(vh) + osc2

)1/2
+
‖∇(Iu− Ivh)‖
‖∇(u− vh)‖ ‖∇(uh − vh)‖ (3.4)

and therefore (3.1) holds also with the multiplicative factor

C̃intp(vh) ≡ ‖∇(Iu− Ivh)‖
‖∇(u− vh)‖ (3.5)

in place of Cintp. We note that C̃intp(vh) depends on the solution u of (1.2).
From the definition of the (solution-independent) factor Cintp, we have

8
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C̃intp(v) ≤ Cintp, for all v ∈ V . Therefore Cintp represents a worst-case scenario

factor and one may expect that most likely C̃intp(vh)� Cintp, vh ∈ Vh.
The argument in [3, Lemma 3.1] (see (1.8)) seems to be based on the triangle

inequality

‖∇(u− vh)‖2 ≤
(
‖∇(u− uh)‖+ ‖∇(uh − vh)‖

)2

≤ 2 ‖∇(u− uh)‖2 + 2 ‖∇(uh − vh)‖2

with the subsequent step ‖∇(u−uh)‖2 ≤ C̃ ·EST(uh) , where on the right-hand
side of the last inequality EST(uh) is replaced by EST(vh). As explained in the
introduction, a justification for this step seems to be missing.

4 A related result

In [2] the authors consider elliptic self-adjoint problems and they use a residual-
based error estimator for setting the stopping criterion for the conjugate gradient
method. Following their approach, one can easily get an upper bound on the
total error. Although the bound is not stated explicitly in [2], it appears in the
proof of Theorem 3.3; see the inequality [2, (3.22)]. The derivation proceeds dif-
ferently from the proof of the bound (3.1) and we present it here to demonstrate
that the verification of the assumption (1.6) represents a challenge.

First, [2, Theorem 2.2] recalls the bound on the discretization error: there
exists a multiplicative factor C2.2 > 0 independent of T , h, u, and uh, such that

‖∇(u−uh)‖2 ≤ C2.2 η
2(uh) , η(uh) ≡

(∑

T∈T
|T | ‖f + ∆uh‖2T + (J(uh))2

)1/2

;

see, e.g., [14, 1]. Using the standard inverse estimates, [2, Lemma 3.1] yields
the inequality

η2(wh) ≤ (1+γ) η2(vh)+C3.1(1+γ−1)‖∇(vh−wh)‖2, for all wh, vh ∈ Vh, γ > 0 ,

where the positive factor C3.1 depends on the shape-regularity of the mesh.
Then, by combining these bounds and the equality

‖∇(u− vh)‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − vh)‖2

that follows from the Galerkin orthogonality (1.4), we get the upper bound on
the total error

‖∇(u− vh)‖2 ≤ C2.2 η
2(uh) + ‖∇(uh − vh)‖2

≤ C2.2 (1 + γ) η2(vh) +
(
1 + C2.2 C3.1 (1 + γ−1)

)
‖∇(uh − vh)‖2

Finally, by setting γ ≡ 1,

‖∇(u− vh)‖2 ≤ 2C2.2 η
2(vh) + (1 + 2C2.2 C3.1) ‖∇(uh − vh)‖2 . (4.1)

In the “practical” criteria proposed in [2, Section 5] for numerical experi-
ments the factors are empirically set to C2.2 ≡ 40, C3.1 ≡ 10, giving
(1 + 2C2.2 C3.1) = 801; cf. (1.8). This nicely underlines the subtleties of the
residual-based bounds discussed above.

9
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5 Numerical illustrations

We use, on purpose, very simple problems to illustrate the possible difference
in the values of C̃intp(vh) and Cintp. While C̃intp(vh) can be, assuming the
knowledge of the exact solution u, evaluated up to a negligible quadrature error,
for the factor Cintp we present a lower bound given by plugging a chosen function
into (2.2). The derivation of a more accurate estimate for Cintp (see also the
discussion in Remark 2.1) is beyond the scope of this paper.

5.1 Numerical illustration in one dimension

We first consider a one-dimensional analogue of the Clément-type quasi-inter-
polation operator I to illustrate that Cintp can be significantly larger than one.

Consider the domain Ω = (0, 1) with the (non-uniform) partition

[0, β, 1/3± β, 2/3± β, 1− β, 1]; β = 0.01.

This partition is adapted to the 1D Laplace problem with the solution

u(x) = tan−1(cx)− tan−1(c(x− 1/3)) + tan−1(c(x− 2/3)) (5.1)

− tan−1(c(x− 1))− tan−1(c/3) + tan−1(2c/3)− tan−1(c) ,

with c = 1000. The left part of Figure 1 depicts the solution u and the Clément-
type quasi-interpolant Iu. For a zero approximate vector, we have

C̃intp(0) =
‖(Iu)′‖
‖u′‖ = 0.77. (5.2)

For a quadratic function w(x) = x(1− x), w ∈ H1
0 (Ω), we have

‖(Iw)′‖
‖w′‖ = 3.70;

see the right part of Figure 1 for the plot of the function w and the interpolant
Iw. Consequently, Cintp ≥ 3.70.
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1
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0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

Figure 1: Left: the solution u (5.1) (solid line) and the interpolant Iu (dotted
line). Right: the function w(x) = x(1− x) (solid line) and Iw (dotted line).
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5.2 Two-dimensional numerical illustration

For two-dimensional numerical illustration we consider the square domain
Ω ≡ (−1, 1)× (−1, 1) and the triangulation T generated by MATLAB1 com-
mand initmesh(’squareg’, ’Hmax’, 0.1) that provides a Delaunay triangu-
lation consisting of 1 368 elements with the maximal diameter less than or equal
to 0.1. The minimal angle of the mesh is 35.9° and the average of the minimal
angles of the elements is 50.3°.

Consider the solution of problem (1.1):

u(1)(x, y) = (x− 1)(x+ 1)(y − 1)(y + 1) . (5.3)

For the zero approximate solution and the Galerkin solution u
(1)
h corresponding

to u(1), we have

C̃intp(0) = 1.02 , C̃intp(u
(1)
h ) = 0.16 .

Similarly, for the exact solution

u(2)(x, y) = (x− 1)(x+ 1)(y − 1)(y + 1) exp(−100(x2 + y2)) , (5.4)

we have
C̃intp(0) = 0.76 , C̃intp(u

(2)
h ) = 0.28 .

In Figure 2 we show the values of C̃intp(vh) for vh generated in conjugate gra-
dient iterations with zero initial vector for solving the linear algebraic systems
corresponding to the discretization of (1.2) with the solutions u(1), u(2) defined
above.

CG iteration
0 5 10 15 20 25 30

C̃
in
tp
(v

h
)

0

0.2

0.4

0.6

0.8

1

1.2
solution u(1)

solution u(2)

Figure 2: The values of C̃intp(vh) for vh generated in conjugate gradient itera-
tions with zero initial vector for solving the linear algebraic systems correspond-
ing to the discretization of (1.2) with the solutions u(1), u(2); see (5.3) and (5.4)
respectively.

To bound the constant Cintp from below we consider wh ∈ Vh such that

wh(z) = 1, z ∈ Nint, wh = 0 on ∂Ω . (5.5)

1using the Partial Differential Equation Toolbox
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For this function

1.10 =
‖∇Iwh‖
‖∇wh‖

≤ Cintp .

Figure 3 gives the difference wh − Iwh that is on the machine precision level
in most of the domain except patches around the nodes adjacent to the bound-
ary ∂Ω. We recall that the proof of Lemma 2.4 gives for this simple problem
and a shape-regular mesh Cintp ≈ 6; see Remark 2.1 and the original paper [5].

For the value C̃intp(vh), it can therefore indeed hold Cintp � C̃intp(vh).
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Figure 3: The difference wh − Iwh for wh given by (5.5).

Conclusion

This paper provides the detailed proof of a residual-based upper bound on the
total approximation error with focus on the multiplicative factors. In partic-
ular, we show that abandoning the Galerkin orthogonality assumption from
the derivation leads to an additional multiplicative factor in the estimator that
scales the contribution of the algebraic error; see (3.1) and (3.4)–(3.5). The

factor C̃intp(vh) depends, besides vh, also on the unknown infinite-dimensional

solution u of (1.2). This generally uncomputable a posteriori factor C̃intp(vh)
can be bounded, using the a priori information, by the solution-independent
factor Cintp given by (2.2). The value of Cintp can overestimate the value

of C̃intp(vh). In practical problems that are solved using an adaptive mesh
refinement algorithm with small angles in the triangulation, the overestimation
can be substantial.
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4.2 Algebraic error in the adaptive finite ele-

ment method

In this section we numerically illustrate the influence of the algebraic error on
the residual-based error indicators and on the adaptive mesh refinement. For
the illustrations we consider Inhomogeneous tensor problems I and II of
Section 2.2 (see also the references therein) and the L-shape problem

−∆u = 0 in Ω u = uD on ∂Ω, (4.1)

where Ω ≡ (−1, 1)× (−1, 1) \ (0, 1)× (−1, 0) and the Dirichlet boundary condi-
tion uD is such that the solution is given in polar coordinates (r, θ) by

u(r, θ) = r2/3 sin (2θ/3) ;

see, e.g., Luce and Wohlmuth [2004]; Ainsworth [2005]; Papež et al. [2014].
Given a discretization mesh T , we denote by u∗T the piecewise affine approx-

imation corresponding to MATLAB backslash approximation x∗ to the solution
of the algebraic system stemming from the discretization of the problem on T .
In the experiments, u∗T provides sufficiently accurate approximation to the corre-
sponding FEM discrete solution.

The sequence {T ∗` } of adaptively refined meshes is generated as in [Papež
et al., 2014, Section 5] and in Section 2.2 (where the following notation is adopted
from). This means that we run adaptive finite element method where we estimate
the energy norm of the (discretization) error on the elements using the residual-
based local error estimators (indicators) for u∗T ∗

`
,

η2
R,T (u∗T ∗

`
) =

h2
T

sT
‖f‖2

L2(T ) +
∑

E⊂∂T

hE
sE
‖[S∇u∗T ∗

`
· nE]‖2

L2(E) ; (4.2)

see, e.g., [Carstensen and Merdon, 2010, Section 2]. Recall that S = siI on Ωi (in
the L-shape problem, si = 1 on Ω), sT = si for T ⊂ Ωi, sE = max{sT | E ∈ ∂T}.
In the considered model problems the source term f = 0 and the first term
on the right-hand side of (4.2) vanishes. The second term is the generalization
of the jump term J(u∗T ∗

`
) from the paper Papež and Strakoš [2016] included in

Section 4.1 for the problems with inhomogeneous diffusion tensor S.
Marking and refinement of the elements is as described in [Papež et al., 2014,

Section 5]. In particular, the mesh elements are ordered such that

η2
R,T1

(u∗T ∗
`

) ≥ η2
R,T2

(u∗T ∗
`

) ≥ · · · ≥ η2
R,TM

(u∗T ∗
`

),

where M is the number of elements in the triangulation T ∗` , and we mark for
refinement the elements T1, . . . , Tm where m is the smallest index such that

m∑

j=1

η2
R,Tj

(u∗T ∗
`

) ≥ Θ

(
m∑

j=1

η2
R,T (u∗T ∗

`
) +

M∑

j=m+1

η2
R,T (u∗T ∗

`
)

)
, Θ = 0.25.

The whole procedure is denoted by AFEM(*).
The second sequence of meshes denoted by {T CG` } is generated by AFEM

with the conjugate gradient method applied for solving the system of the linear
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algebraic equations. On each level corresponding to the mesh T CG` we stop the CG
iterations (using zero initial guess) when the k-th approximation xCG(k) satisfies

‖x∗ − xCG(k)‖2
A < 0.01 ‖S1/2∇(u− u∗T CG

`
)‖2 (4.3)

and denote by uCGT CG
`

the approximation given by the coefficient vector xCG(k).

The marking strategy and refinement in AFEM(CG) is analogous to AFEM(*),
however, it is based on the local error indicators η2

R,T

(
uCGT CG

`

)
given by (4.2) with

replacing u∗T ∗
`

by the approximation uCGT CG
`

.

Remark: We emphasize that the error indicators (4.2) are derived for estimat-
ing the energy norm of the discretization error u − uT` ; see the seminal paper
Babuška and Rheinboldt [1978]. There exists an (unspecified) multiplicative fac-
tor C such that

‖S1/2∇(u− uT`)‖

≤ C





(∑

K∈T`

h2
T

sT
‖f‖2

L2(T )

)1/2

+

(∑

E∈E

hE
sE
‖[S∇uT` · nE]‖2

L2(E)

)1/2


 . (4.4)

The derivation of (4.4) uses the Galerkin orthogonality and the indicators are
evaluated for the (unavailable) Galerkin solution uT` . The impact of abandoning
the assumption on the Galerkin orthogonality and plugging a computed approxi-
mation into (4.4) was thoroughly studied in Papež and Strakoš [2016]. However,
the crucial question how the indicators (4.2) estimate the local distribution of the
energy norm of the total (or discretization) error in the presence of a (nonnegli-
gible) algebraic error is still open.

The simplest way how to compare the sequences of the meshes {T ∗` } and
{T CG` } is to plot the values ‖S1/2∇(u − u∗T ∗

`
)‖, ‖S1/2∇(u− u∗T CG

`
)‖ that provide

sufficiently tight approximations to the energy norm of the corresponding dis-
cretization errors. We then visualize also the (local) differences of the meshes
given by AFEM(*) and AFEM(CG), respectively. Rather than comparing T ∗`
and T CG` after a given number ` of AFEM steps, we show the comparison of the
meshes T ∗` , T CGk with a similar number of vertices. In the figures we depict in
black the edges of the triangulation T ∗` that are not in the triangulation T CGk

(denoted in captions by T ∗` \ T CGk ). The edges of T CGk that are not in T ∗` are in
red color and denoted by T CGk \ T ∗` .
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L-shape problem
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Figure 4.1: Left: the energy norm of the discretization error on the sequence of
meshes generated by AFEM(*) and AFEM(CG) respectively. Right: the number
of mesh vertices in AFEM steps.

Figure 4.2: The difference of the adaptively refined meshes. Left: T ∗13 \ T CG13

(black), T CG13 \ T ∗13 (red). The mesh T ∗13 consists of 3376 vertices, T CG13 consists of
3413 vertices. Right: T ∗19 \ T CG19 (black), T CG19 \ T ∗19 (red). The mesh T ∗19 consists
of 21 575 vertices, T CG19 consists of 21 967 vertices.
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Inhomogeneous tensor problem I
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Figure 4.3: Left: the energy norm of the discretization error on the sequence of
meshes generated by AFEM(*) and AFEM(CG) respectively. Right: the number
of mesh vertices in AFEM steps.

Figure 4.4: The difference of the adaptively refined meshes. Left: T ∗15 \ T CG14

(black), T CG14 \ T ∗15 (red). The mesh T ∗15 consists of 3625 vertices, T CG14 consists of
3674 vertices. Right: T ∗21 \ T CG20 (black), T CG20 \ T ∗21 (red). The mesh T ∗21 consists
of 25 780 vertices, T CG20 consists of 26 283 vertices.
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Inhomogeneous tensor problem II
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Figure 4.5: Left: the energy norm of the discretization error on the sequence of
meshes generated by AFEM(*) and AFEM(CG) respectively. Right: the number
of mesh vertices in AFEM steps.

Figure 4.6: The difference of the adaptively refined meshes. Left: T ∗35 \ T CG29

(black), T CG29 \ T ∗35 (red). The mesh T ∗35 consists of 3247 vertices, T CG29 consists of
3270 vertices. Right: T ∗48 \ T CG45 (black), T CG45 \ T ∗48 (red). The mesh T ∗48 consists
of 22 648 vertices, T CG45 consists of 22 836 vertices.

Observations

The effect of algebraic error on the adaptive refinement procedures is a complex
and yet not fully described issue; a recent survey on interplay between the al-
gebraic error and a posteriori error estimates in AFEM can be found, e.g., in
Arioli et al. [2013]. The experiments of this section demonstrate that the se-
quences of meshes constructed adaptively in AFEM can significantly differ when
the corresponding algebraic systems are solved with negligible and nonnegligible
algebraic error; see the local differences of the meshes in Figures 4.2, 4.4 and 4.6.
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Regarding the energy norm of the associated discretization errors (which can be
understood as a global measure of the mesh quality), the test problems illustrate
three possible situations:

1. We refine nearly the same number of elements in each step of AFEM(*) and
AFEM(CG) and the elements that differ contribute to the overall norm of the
discretization error almost equally. Therefore the norm of the discretization
error is decreased in each step of AFEM(CG) very similarly to AFEM(*). This
was observed in the experiment with the L-shape test problem; see Figure 4.1.

2. In AFEM(CG) steps we refine more elements than in AFEM(*) and all the
refined elements contribute significantly to the overall norm of the discretiza-
tion error. Then AFEM(CG) can converge as fast as AFEM(*), which means
that the reduction of the energy norm of the discretization error against the
number of vertices is the same for AFEM(CG) and AFEM(*); see the first
AFEM steps for the Inhomogeneous tensor problem I in Figure 4.3. In this
(favorable) situation, a smaller number of AFEM(CG) steps with comparison
to AFEM(*) is necessary to decrease the discretization error below a prescribed
tolerance.

3. The mesh is in AFEM(CG) refined (also) in parts of the domain that do
not significantly contribute to the overall norm of discretization error. This
slows down the convergence of the AFEM procedure and it makes the solution
process less efficient. We observed such behavior in the initial AFEM steps for
the Inhomogeneous tensor problem II; see Figure 4.5.

The results of the experiments for these simple model problems are disturb-
ing. They suggest that in practical computations the effect of the algebraic error
to adaptivity can be substantial. We believe that a thorough study of the influ-
ence of the algebraic error on local a posteriori error indicators and the adaptive
refinement procedures is highly desirable. The choice of the indicators and the
choice of stopping criteria should avoid the third situation described above, i.e.
the refinement of the mesh in inappropriate parts of the domain. Otherwise, the
efficiency of the whole adaptive procedure and also reaching a prescribed accuracy
can be endangered.
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5. Estimating and localizing the
algebraic and total numerical
errors using flux reconstructions

Paper Papež et al. [2016] included in Section 5.1 presents, using the Poisson model
problem, a methodology for computing upper and lower bounds for the energy
norm of the algebraic and total errors. The derived bounds do not contain any
unspecified constants and allow for estimating the local distribution of the errors
over the computational domain. Paper also investigates bounds on the energy
norm of the discretization error and their application for constructing stopping
criteria balancing the discretization and algebraic errors. An additional comment
answering an open question from [Papež et al., 2016, Section 5] and a related
numerical experiment is then present in Section 5.2.

The paper Papež et al. [2016] represents the joint work with Martin Vohraĺık
and Zdeněk Strakoš. In Section 5.2, we acknowledge the collaboration with Ivana
Pultarová.

5.1 Paper submitted to Numerische Mathema-
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The section includes the paper Papež et al. [2016] submitted to Numerische
Mathematik on May 3, 2016.
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Abstract

This paper presents a methodology for computing upper and lower
bounds for both the algebraic and total errors in the context of the con-
forming finite element discretization and an arbitrary iterative algebraic
solver. The derived bounds are based on the flux reconstruction tech-
niques, do not contain any unspecified constants, and allow estimating
the local distribution of both errors over the computational domain. We
also discuss bounds on the discretization error, their application for con-
structing mathematically justified stopping criteria for iterative algebraic
solvers, global and local efficiency of the total error upper bound, and
the relationship to the previously published estimates on the algebraic
error. Theoretical results are illustrated on numerical experiments for
higher-order finite element approximations and the preconditioned conju-
gate gradient method.
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method, a posteriori error estimation, algebraic error, discretization error, stop-
ping criteria, spatial distribution of the error
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1 Introduction

Most a posteriori error analyses of numerical approximations of partial differ-
ential equations still assume that the discretized algebraic problem is solved
exactly. This is an unrealistic assumption that cannot be satisfied in large scale
numerical computations. There is, fortunately, a growing body of work avoiding
it, based on different approaches, see, e.g., [18, 5, 8, 44, 54, 42, 49, 11, 29, 32, 7,
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48, 2, 22], the references given in the survey [3, Section 4], and in the monograph
[35, Chapter 12]. Despite this development, a rigorous, mathematically justi-
fied, cheap, and accurate estimation of the discretization and algebraic errors
that would allow for their comparison in practical computations is not, in our
opinion, a fully solved problem. On the algebraic side, such comparison should
include localization of the algebraic error. Since the algebraic computation aims
at approximating the inverse of the discrete operator with respect to the given
right-hand side, the algebraic error is of global nature and its distribution over
the computational domain can be very different from the distribution of the
discretization error; see, e.g., [40] and the references therein. To point out chal-
lenges that any approach that aims at mathematically rigorous incorporation of
the algebraic error into a posteriori error analysis must consider, we now discuss
several ways of how the algebraic error in numerical PDEs is estimated.

The conjugate gradient (CG) method minimizes the energy norm of the
algebraic error over the Krylov subspaces associated with a symmetric positive
definite matrix A and the initial residual; see, e.g., [30], [33, Section 2.2]. The
estimates for the error of the CG approximations are widely studied; see, e.g.,
[26, 12, 50, 38], and the references given there. The estimates can be associated
with the relationship of CG to the Gauss quadrature; see, e.g., [33, Section 3.5].
We will briefly discuss the upper bound based on the Gauss–Radau quadrature;
see [16, 26, 28, 39] and called in [2, p. A1548] “[t]he only guaranteed upper
bound for the A-norm of the CG error”. Considering a preassigned node λ,
0 < λ < λmin(A), where λmin(A) is the smallest eigenvalue of the matrix A,
the Gauss–Radau quadrature gives indeed, assuming exact arithmetic, an upper
bound on the energy norm of the algebraic error. In [2, Section 4.2] the Poincaré
inequality adaptive approach for bounding λmin(A) from below and setting the
value of λ is proposed.

Numerically, however, the situation is very subtle. In short, if 0 < λ �
λmin(A), then the Gauss–Radau quadrature bound may largely overestimate the
actual error. On the other hand, for λ very close to λmin(A), which can make
the upper bound tight, it might be impossible to compute the upper bound to
a sufficient accuracy because of numerical instabilities. The derivation of the
estimate includes (implicitly or explicitly) inversion of the matrix λI−Ti, where
I stands for the identity matrix and Ti is the Jacobi matrix associated with the
ith CG iteration. For λ very close to λmin(A) ≤ λmin(Ti), and, at the same
time, λmin(Ti) very close to λmin(A), the matrix λI − Ti may become close
to numerically singular. It should be emphasized that the numerical difficulty
may not be visible from the final formulas giving the bound; see, e.g., [39].
The numerical stability analysis provided in [28] explained that although the
estimates based on the relationship of CG with the Gauss–Radau quadrature
can be very useful, they cannot be considered generally applicable guaranteed
and computable upper bounds for the energy norm of the algebraic error. The
meaning of the terms guaranteed and computable is within numerical linear
algebra restricted only to the cases where the results are justified for all possible
input data by a rigorous numerical stability analysis.

Multigrid or, more general, multilevel computations can serve as a second
example. Here a standard assumption for a posteriori bounds on the algebraic
error, which might require further substantial analysis, is that the algebraic
problem on the coarsest grid is solved exactly ; see, e.g., [5, 49]. Moreover, the
literature known to the authors does not provide computable upper bounds on
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the algebraic and the total errors. This topic has recently been addressed in [41].
Alternatively, in the multilevel context the a priori arguments are often used;
see the discussion in Section 3.3.

A remarkable early concept relating the algebraic and discretization errors
is represented by the Cascadic Conjugate Gradient method; see [18, 47]. In [18],
the algebraic error is estimated assuming the superlinear convergence behavior
of the CG method in the subsequent iterations, and using several heuristics
and empirically chosen parameters. The analysis of [47] relies on the upper
bound for the CG method based on Chebyshev polynomials that is typically
not descriptive, and its refined version based on composite polynomials may not
hold in finite precision computations; see [25]. The CG iterations can exhibit
locally the so-called staircase behavior (see [33, Chapter 5]) that makes the
analysis difficult.

The general a posteriori error estimation framework of [46] provides a guar-
anteed upper bound on the total error independent of the algebraic solver. How-
ever, the estimates do not generally allow to distinguish and compare the parts
of the error corresponding to different sources and seem not suitable for con-
structing stopping criteria for iterative solvers.

The widely used residual-based error estimators (see, e.g., [49, 6, 2] and the
references in [53]) provide upper bounds on the total error (and possibly on its
components) with unspecified generic constants that can be of large value. The
proposed practical stopping criteria and algorithms then require an empirical
choice of these constants. A review of these and other approaches can be found
in the survey [3]; see also the discussion in the Introduction of [32].

The presented paper elaborates further on the ideas used in [32] for finite
volume discretizations, and in a more general framework in [22]; see also their
application to discontinuous Galerkin finite element discretizations in [20]. Here
we consider the conforming finite element setting and derive an upper bound on
the total error that will be proved locally efficient and polynomial-degree-robust
in the spirit of [9, 23]. All results account for the presence of the algebraic error of
an arbitrary iterative solver. The paper also presents a guaranteed upper bound
on the algebraic error and thoroughly discusses its relationship to formulas
derived purely algebraically. Fast and reliable numerical computations using
iterative algebraic solvers rely on meaningful stopping criteria. The stopping
criteria from [32, 22] are modified here in order to avoid a possible early stopping
that could invalidate the computed results.

The paper is organized as follows. The diffusion model problem considered
in the paper and the notation are described in Section 2. In Section 3 we
discuss known results on estimating the algebraic error using algebraic worst-
case bounds, a priori arguments, and techniques using additional iteration steps
of the algebraic solver. Section 4 gives an upper bound on the total error
based on a quasi-equilibrated flux reconstruction. In Section 5 we derive an
upper bound on the algebraic error and discuss its relationship to the bounds
presented in Section 3. Section 6 is devoted to estimates of the discretization
error and to discussion of the stopping criteria. We finally illustrate the obtained
results numerically in Section 7 and give a concluding discussion in Section 8.
We collect in Appendix A the proofs of the global and local efficiency of the
presented total error bound.
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2 Setting and notation

Let Ω ⊂ Rd, d = 2, 3, be a polygonal (polyhedral) domain (open, bounded, and
connected set). We consider the Poisson model problem: find u : Ω → R such
that

−∇· (∇u) = f in Ω, u = 0 on ∂Ω, (2.1)

that can be equivalently written as the system of two first order equations for the
scalar-valued potential u and the vector-valued function called flux σ ≡ −∇u,

[
∇ I
0 ∇·

] [
u
σ

]
=

[
0
f

]
in Ω, u = 0 on ∂Ω.

Assuming f ∈ L2(Ω), the weak form of the model problem (2.1) is as follows:
find u ∈ V ≡ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ V, (2.2)

where H1
0 (Ω) denotes the standard Hilbert space of L2(Ω) functions whose weak

derivatives are in L2(Ω) and with trace vanishing on ∂Ω. For v, w ∈ L2(Ω),
(v, w) stands for

∫
Ω
v(x)w(x) dx (and similarly in the vector-valued case). Here-

after ‖ · ‖ denotes the L2 norm, ‖w‖ ≡ (w,w)1/2, w ∈ L2(Ω). Owing to (2.2),
the flux σ is in the space H(div,Ω) of the functions in [L2(Ω)]d with the weak
divergence in L2(Ω); see, e.g., [15, Section 6.13].

Let Th be a simplicial mesh of Ω. We suppose that the mesh is conforming
in the sense that, for two distinct elements of Th, their intersection is either an
empty set or a common `-dimensional face, 0 ≤ ` ≤ d− 1. We denote a generic
element of Th by K and its diameter by hK . We denote by Pp(K), p ≥ 0, the
space of pth order polynomial functions on an element K and by Pp(Th) the
broken polynomial space spanned by vh|K ∈ Pp(K) for all K ∈ Th.

Let
Vh ≡

{
vh ∈ Pp (Th) ∩ C(Ω) | vh = 0 on ∂Ω

}
⊂ H1

0 (Ω)

be the usual finite element space of continuous, piecewise pth order polynomial
functions, p ≥ 1. The discrete formulation corresponding to the problem (2.2)
reads: find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh. (2.3)

The (exact) solution uh of (2.3) satisfies the Galerkin orthogonality

(∇(uh − u),∇vh) = 0 ∀vh ∈ Vh. (2.4)

Let ψj ∈ Vh, j = 1, . . . , N , denote a basis of Vh, Ψ = {ψ1, . . . , ψN}. Employ-
ing these functions in (2.3) gives rise to the system of linear algebraic equations

AU = F, (2.5)

where uh =
∑N
j=1 Ujψj = ΨU, U = [Uj ] is the vector of unknowns, the sys-

tem matrix A = [Aj`] is symmetric and positive definite, Aj` = (∇ψ`,∇ψj),
j, ` = 1, . . . , N , and the right-hand side vector F = [Fj ] is given by Fj = (f, ψj),
j = 1, . . . , N . Within this model problem setting, we consider an iterative al-
gebraic solver approximating the exact solution U of (2.5). At the i-th step,

4

– 89 –



i = 0, 1, 2, . . ., we obtain the approximation Ui = [Uij ] and the algebraic residual

vector Ri = [Rij ] with

Ri ≡ F− AUi. (2.6)

By uih we denote the approximation to the solution u of (2.2) determined by the

coefficient vector Ui, uih ≡
∑N
j=1 U

i
jψj = ΨUi. We also rewrite (2.6) in a func-

tional setting. For this purpose, let a function rih ∈ L2(Ω) be a representation
of the algebraic residual vector Ri satisfying

(rih, ψj) = Rij , j = 1, . . . , N. (2.7)

Two examples are given in Section 5.1 below. Then (2.6) can be rewritten as

(rih, ψj) = (f, ψj)− (∇uih,∇ψj) ∀j = 1, . . . , N (2.8)

and, together with (2.3), it also implies

(rih, vh) = (f, vh)− (∇uih,∇vh) = (∇(uh − uih),∇vh) ∀vh ∈ Vh. (2.9)

This representation, introduced in this paper, will play the key role in the con-
struction of the estimators below.

The total error between the exact solution u and the approximate solution
uih is measured in the energy norm ‖∇(u− uih)‖. Analogously, the algebraic
energy norm of the error uh − uih is

‖∇(uh − uih)‖ = ‖U − Ui‖A =
(
(U − Ui),A(U − Ui)

)1/2

= (A−1Ri,Ri)1/2 = ‖Ri‖A−1 ,

where (V,U) denotes the standard inner product of the vectors U and V,
‖V‖ ≡ (V,V)1/2 stands for the Euclidean norm of V, and ‖A‖ is the induced
spectral norm of the matrix A.

3 Algebraic bounds

This section presents some well-known algebraic bounds, with a few comments
towards the conjugate gradient method and multilevel methods.

3.1 The L2 (Euclidean) norm residual bound

The simplest algebraic error upper bound consists in

‖∇(uh − uih)‖ = ‖Ri‖A−1 ≤ ‖A−1‖1/2 · ‖Ri‖. (3.1)

For a symmetric positive definite matrix, the norm ‖A−1‖ is given by the re-
ciprocal of the smallest eigenvalue of the matrix A. It is clear that for A ill-
conditioned, the bound (3.1) can significantly overestimate the algebraic error.
Remark that equality is attained for a vector Ri collinear with the eigenvector
corresponding to the smallest eigenvalue of A.

Even this simplest worst-case bound may not be easy to compute. The
smallest eigenvalue of A is typically not available, and, if it is close to zero,
then the cost of its reliable and accurate approximation may not be negligible;
see, e.g., [36, 37]. We derive easily computable L2 norm residual bounds in
Section 5.2 below, based on the residual representation rih in (2.7); see the
estimates (5.3), (5.4), and (5.8).

5

– 90 –



3.2 Bounds using additional algebraic iterations

The following simple idea was to our knowledge first presented for algebraic
error estimates in [28, pp. 262–263] for the CG method; see also [50, 38]. For
estimating the total error it was then used in [32] and in [22], where an arbitrary
algebraic solver was considered.

The triangle inequality gives, at the cost of ν > 0 additional iterations,

‖U −Ui‖A ≤ ‖Ui+ν −Ui‖A + ‖U −Ui+ν‖A = ‖Ui+ν −Ui‖A + ‖Ri+ν‖A−1 . (3.2)

Assuming that for a given parameter γ > 0, the choice of ν ensures

‖A−1‖1/2 · ‖Ri+ν‖ ≤ γ‖Ui+ν − Ui‖A, (3.3)

we have, using (3.1), an easily computable upper bound

‖U − Ui‖A ≤ (1 + γ)‖Ui+ν − Ui‖A. (3.4)

Moreover,

‖Ui+ν − Ui‖A ≤ ‖U − Ui‖A + ‖U − Ui+ν‖A ≤ ‖U − Ui‖A + γ‖Ui+ν − Ui‖A,

so that, assuming that 0 < γ < 1, we get the lower bound

(1− γ)‖Ui+ν − Ui‖A ≤ ‖U − Ui‖A. (3.5)

Here (3.4) and (3.5) show that the accuracy of the estimate ‖Ui+ν − Ui‖A is
controlled by the user-specified parameter γ.

We must, however, take into account the following principal issue. If

‖U − Ui+ν‖A = ‖Ri+ν‖A−1 � ‖A−1‖1/2 · ‖Ri+ν‖,

the value of ν satisfying (3.3) can be very large. In the worst case, the value of ν
can be even comparable with the size of the problem. Such situation is highly
improbable in practical problems where preconditioning is used in order to get
a reasonable convergence behavior. Still, for a given parameter γ, the smallest
ν1, respectively ν2, satisfying

‖Ri+ν1‖A−1 ≤ γ‖Ui+ν1 − Ui‖A resp. ‖A−1‖1/2 · ‖Ri+ν2‖ ≤ γ‖Ui+ν2 − Ui‖A,
(3.6)

where both sides of the inequalities depend on ν1 respectively ν2, can signifi-
cantly differ with ν1 � ν2. Section 7.1 below presents a numerical illustration.

Estimating the algebraic error in the CG method in [28, pp. 262-263] con-
sidered performing ν additional iterations and using the relation

‖U − Ui‖2A = ‖Ui+ν − Ui‖2A + ‖U − Ui+ν‖2A = ‖Ui+ν − Ui‖2A + ‖Ri+ν‖2A−1

(3.7)

that is based on the global A-orthogonality of the CG direction vectors. The
detailed rounding error analysis (see [50, (4.9)], [51, (3.7)] with the reference to
the original paper [30]) leads to the following mathematical (exact arithmetic)
equivalent of (3.7)

‖U − Ui‖2A = (µCG,i,ν
alg )2 + ‖Ri+ν‖2A−1 . (3.8)
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This relation can be derived assuming only local orthogonality that is well-pre-
served also in finite precision CG computations as a consequence of enforc-
ing numerically the orthogonality among the consecutive direction vectors and
residuals. Therefore (3.8) holds, apart from a small inaccuracy proportional to
machine precision, also for the computed quantities. The same, however, has
not been proved for (3.7).

In [50, 51], it was shown how to compute µCG,i,ν
alg at a negligible cost directly

from the coefficients in the CG recurrences; see also [27], [38, Section 5.3]. The
resulting lower bound

µCG,i,ν
alg ≤ ‖U − Ui‖A (3.9)

holds until the ratio ‖U−Ui‖A/‖U−U0‖A becomes close to the machine precision
(for details see [50, Section 10]), and it is tight providing that the actual energy
norm of the error decreases reasonably fast. Analogously to (3.3), assuming
(nontrivially) that for a given parameter γ > 0, the number ν > 0 of additional
iteration steps is such that

‖A−1‖ · ‖Ri+ν‖2 ≤ γ2(µCG,i,ν
alg )2,

then µCG,i,ν
alg gives (neglecting the terms proportional to machine precision)

(µCG,i,ν
alg )2 ≤ ‖U − Ui‖2A ≤ (1 + γ2) (µCG,i,ν

alg )2. (3.10)

In conclusion, the general bounds in (3.4) and (3.5) do not require any addi-
tional assumptions. Their value can be determined directly from the computed
quantities Ui,Ui+ν . The bounds for the CG method in (3.10) can be evaluated
at almost no cost, but their validity for numericaly computed approximations
Ui,Ui+ν had to be proved using a careful numerical stability analysis. As a re-
ward, which is based on the particular properties of the CG method, we get an
improved accuracy of the bounds, with the factor characterizing the gap between
the lower and the upper bound reduced from (1 + γ)/(1− γ) in (3.4)–(3.5) to√

1 + γ2 in (3.10).

3.3 A priori arguments in multilevel methods

Convergence of multilevel methods is typically proved using the a priori con-
traction argument

‖U − Ui+1‖A ≤ γ‖U − Ui‖A,
where 0 < γ < 1. Then the triangle inequality immediately gives the algebraic
error bound

‖U − Ui‖A ≤
1

1− γ ‖U
i+1 − Ui‖A.

Though such bounds with a priori determined constant γ can be useful (see,
e.g., [7, (2.17)–(2.18)] and the references therein), we believe, as discussed in
the introduction, that a posteriori bounds such as that of [5] or its unknown-
constant-free improvement in [41] are preferable.
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4 Estimating the total error

We give in this section computable upper and lower bounds on the total error.
The upper bound based on flux reconstruction following [17, 10, 32, 22, 23]
is derived in a form where the component associated with the algebraic error
actually turns out to give its upper bound; see Section 5. The lower bound on
the total error is given in Section 4.5 using conforming residual reconstruction.
We will frequently use the following representation of the energy norm of the
total error

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

(∇(u− uih),∇v). (4.1)

4.1 Concept of the flux reconstructions

The motivation for our approach is to mimic the continuous world, where (us-
ing (4.1), (2.2), the Green theorem, and the Cauchy–Schwarz inequality),

‖∇(u− uih)‖ = inf
d∈H(div,Ω),∇·d=f

sup
v∈V, ‖∇v‖=1

{(f −∇·d, v)− (∇uih + d,∇v)}

= inf
d∈H(div,Ω),∇·d=f

‖∇uih + d‖;

the equality occurs for d = σ = −∇u. We also wish to use an upper bound
on the algebraic error based on the representation rih. This allows to relate the
algebraic and discretization error components.

Practically, a reconstructed flux is a piecewise polynomial function in the
Raviart–Thomas–Nédélec subspace Vh of the infinite-dimensional space
H(div,Ω). It is constructed in an inexpensive local way, around each node
of the mesh Th, and it satisfies, on each iteration step i ≥ 1,

∇·dih = fh − rih. (4.2)

Here fh is a piecewise polynomial approximation of the source term f satisfying

(f − fh, 1)K = 0 ∀K ∈ Th. (4.3)

The precise definition of the space Vh and the detailed construction of dih are
given below in Section 4.4.

4.2 Upper bound using the L2 norm of the algebraic resid-
ual representation

Similarly to Section 3.1, to illustrate the ideas, we first present a simple upper
bound on the total error following [32, Section 7.1]. It typically yields a large
overestimation. It follows from (4.1), the weak formulation (2.2), the construc-
tion (4.2), and the Green theorem that

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

{
(f − fh, v) + (rih, v)− (∇uih + dih,∇v)

}
. (4.4)

Using (4.3) and the Poincaré inequality on the mesh elements,

(f − fh, v) ≤ ηosc‖∇v‖, ηosc ≡
( ∑

K∈Th
η2

osc,K

)1/2

, ηosc,K ≡
hK
π
‖f − fh‖K ;

(4.5)
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see, e.g., [22, p. A1767]. The Friedrichs inequality states that there exists a
generic constant 0 < CF ≤ 1 such that

‖v‖ ≤ CFhΩ‖∇v‖ ∀v ∈ V, (4.6)

where hΩ denotes the diameter of the domain Ω. The value of CF can be
bounded1 using, e.g., [45, Chapter 18]. Thus, from the Cauchy–Schwarz in-
equality and from (4.6),

(rih, v) ≤ ‖rih‖‖v‖ ≤ ‖rih‖CFhΩ‖∇v‖, (4.7)

(∇uih + dih,∇v) ≤ ‖∇uih + dih‖‖∇v‖. (4.8)

Then (4.4) immediately gives the upper bound on the total error

‖∇(u− uih)‖ ≤ ηosc + CFhΩ‖rih‖+ ‖∇uih + dih‖. (4.9)

The part ηosc measures the oscillations in the right-hand side f and it is often
negligible in comparison to the discretization error. The part CFhΩ‖rih‖ in (4.9)
bounds the algebraic error; see (5.3) below. Finally, we will associate the last
term ‖∇uih + dih‖ with estimating the discretization error as in [22].

4.3 Upper bound using additional algebraic iterations

Following [22], the idea of using ν > 0 additional iterations described in Sec-
tion 3.2 can be analogously applied here to substantially improve the bound
(4.9).

Given the computed approximation uih, we construct the algebraic residual
representation rih satisfying (2.7) and a reconstructed flux dih ∈ Vh satisfy-
ing (4.2). After ν > 0 additional iterations of the algebraic solver, giving the
approximation ui+νh , we construct ri+νh satisfying (2.7) with i replaced by i+ ν
and a reconstructed flux di+νh ∈ Vh satisfying ∇·di+νh = fh − ri+νh . Thus,

rih = −∇·dih + fh = −∇·dih +∇·di+νh + ri+νh (4.10)

and we have as above

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

{(f − fh, v) + (dih − di+νh ,∇v)

+(ri+νh , v)− (∇uih + dih,∇v)},

which immediately leads to, cf. [22, Theorem 3.6]:

Theorem 1 (Upper bound on the total error). Let u be the weak solution
given by (2.2) and let uih ∈ Vh be its approximation given at the ith algebraic
solver iteration with the corresponding algebraic residual representation rih given
by (2.8). Let a reconstructed flux dih ∈ Vh satisfy (4.2). Consider ν > 0
additional algebraic iterations, resulting in ri+νh and di+νh . Then

‖∇(u− uih)‖ ≤ ηi,νtotal ≡ ηosc + ‖di+νh − dih‖+ CFhΩ‖ri+νh ‖+ ‖∇uih + dih‖,

where the data oscillation term ηosc is given by (4.5) and CFhΩ is the constant
from the Friedrichs inequality (4.6).

1For example, for a square domain Ω ⊂ R2 we can take CF = 1/(2π), corresponding to the
smallest eigenvalue of the Laplace operator; see, e.g., [45, relation (18.48) on p. 196]
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Remark 1. The statement of Theorem 1 deserves several comments that point
out to the results presented later in the text. We typically choose ν in concor-
dance with the theoretical justification (global efficiency) of Theorem 7 below;
see also (7.3c) in the numerical experiments. Local efficiency of ηi,νtotal is proved
in Appendix A for i and ν based on local stopping criteria. Note that the sum
‖di+νh − dih‖ + CFhΩ‖ri+νh ‖ gives an upper bound on the algebraic error (see
Theorem 3 below), whereas the term ‖∇uih + dih‖ can be associated, at least in
the case of a small algebraic error, with the discretization error; see the further
results in Section 6 and Section 7.4.

4.4 Details of the flux reconstruction

We now present the construction of the flux dih. It follows [22, Section 6.2.4]
(see also [17, 10]) with the difference in the construction of the algebraic residual
representation rih satisfying (2.7). This difference is, however, crucial, as it
allows to bound the algebraic error in Theorem 3 below. The construction is
rather technical and its detailed study is not substantial for understanding the
rest of the paper.

For K ∈ Th, let RTNp′(K) ≡ [Pp′(K)]d+xPp′(K) be the Raviart–Thomas–
Nédélec finite element space of order p′ ≥ 0. We set

RTN−1
p′ (Th) ≡

{
vh ∈ [L2(Ω)]d,vh|K ∈ RTNp′(K) ∀K ∈ Th

}

and RTNp′(Th) ≡ RTN−1
p′ (Th)∩H(div,Ω). We use a similar notation for these

spaces on various patches. Let Vh denote the set of mesh vertices with subsets
V int
h for interior vertices and Vext

h for boundary ones. Let ψa ∈ P1(Th) ∩H1(Ω)
stand for the hat function associated with a vertex a ∈ Vh (i.e., ψa(a) = 1,
ψa(a

′) = 0 for a 6= a′ ∈ Vh). We denote by Ta the union of elements sharing the

vertex a ∈ Vh and by ωa the corresponding open subdomain. Let RTNN,0
p′ (Ta)

be the subspace of RTNp′(Ta) with zero normal flux through the boundary

∂ωa for a ∈ V int
h and through ∂ωa\∂Ω for a ∈ Vext

h (corresponding to a homo-
geneous Neumann condition). Let P∗p′(Ta) be spanned by piecewise p′th order

polynomials on Ta, with zero mean on Ta when a ∈ V int
h .

For all vertices a ∈ Vh, we first solve the following mixed finite element

problems on the patches Ta: find dih,a ∈ RTNN,0
p′ (Ta) and qh,a ∈ P∗p′(Ta), p′ = p

or p′ = p+ 1, such that

(dih,a,vh)ωa
− (qh,a,∇·vh)ωa

= −(ψa∇uih,vh)ωa
, (4.11a)

(∇·dih,a, φh)ωa
= (fhψa −∇uih · ∇ψa, φh)ωa

− (rihψa, φh)ωa
(4.11b)

for all (vh, φh) ∈ RTNN,0
p′ (Ta)× P∗p′(Ta). Then we set

dih ≡
∑

a∈Vh

dih,a. (4.11c)

We typically choose fh to be the L2(Ω)-orthogonal projection of f onto the
space of the piecewise polynomials of degree p′, and rih ∈ Pp(Th); see Sec-
tion 5.1. Since ψa ∈ Vh, (2.8) gives the Neumann compatibility condition of the
problem (4.11a)–(4.11b),

(∇uih,∇ψa)ωa
= (f, ψa)ωa

− (rih, ψa)ωa
.
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Consequently, we can in (4.11b) take all test functions φh ∈ Pp′(Ta), which
allows to show that dih given by (4.11) satisfies (4.2), i.e., that ∇·dih = fh − rih
holds. Indeed, let K ∈ Th and let vh ∈ Pp′(K) be fixed. Since

∑
a∈Vh ψa|K = 1

and
∑

a∈Vh ∇ψa|K = 0 (ψa form a partition of unity on K), we infer

(∇·dih, vh)K =
∑

a∈Vh

(∇·dih,a, vh)K

=
∑

a∈Vh

[
(fhψa −∇uih · ∇ψa, vh)K − (rihψa, vh)K

]

= (fh, vh)K − (rih, vh)K ,

and (4.2) is proved as fh − rih ∈ Pp′(Th).

4.5 Lower bound

Following [4, Section 5.1], [46, Section 4.1.1], or [23, Section 3.3], one can use
the conforming version of the local Neumann problems (4.11a)–(4.11b) to bound
the total error ‖∇(u − uih)‖ from below. For each vertex a ∈ Vh, consider the
infinite-dimensional space H1

∗ (ωa)

H1
∗ (ωa) ≡

{
v ∈ H1(ωa); (v, 1)ωa

= 0 a ∈ V int
h ,

v ∈ H1(ωa); v = 0 on ∂ωa ∩ ∂Ω a ∈ Vext
h .

(4.12)

For the functions from the space H1
∗ (ωa) the following Poincaré–Friedrichs-type

inequalities hold: there exists a positive constant CPF,ωa
, depending on the

shape of the elements of the patch Ta but not on their diameters, and a positive
constant Ccont,PF,ωa

≡ 1+CPF,ωa
hωa
‖∇ψa‖∞,ωa

(see, e.g., [23, inequality (3.29)])
such that

‖v‖ωa
≤ CPF,ωa

hωa
‖∇v‖ωa

∀v ∈ H1
∗ (ωa), (4.13)

‖∇(ψav)‖ ≤ Ccont,PF,ωa
‖∇v‖ωa

∀v ∈ H1
∗ (ωa). (4.14)

For convex patches Ta around the interior vertices a we have CPF,ωa
= 1/π; see,

e.g., [43]. For nonconvex patches we refer to [23, 52] and the references therein.
For a shape-regular mesh hωa

‖∇ψa‖∞,ωa
= O(1) (see, e.g., [14, relation (3.1.43)

on p. 124]), giving Ccont,PF,ωa
= O(1); see the discussion in [23, Remark 3.24].

For each vertex a ∈ Vh, let W a
h be a finite-dimensional subspace of H1

∗ (ωa).
The simplest choice, which we use in numerical experiments in Section 7.4, is
W a
h ≡ Pp (Ta) ∩H1

∗ (ωa). We then have the following bound:

Theorem 2 (Lower bound on the total error). Let u be the weak solution
given by (2.2) and let uih ∈ Vh be its approximation given at the ith algebraic
solver iteration with the corresponding algebraic residual representation rih given
by (2.8). For each vertex a ∈ Vh, let mh,a ∈W a

h be the solution of

(∇mh,a,∇vh)ωa
= (f, ψavh)ωa

− (∇uih,∇(ψavh))ωa
∀vh ∈W a

h .

Set mh ≡
∑

a∈Vh ψamh,a ∈ V . Then

‖∇(u− uih)‖ ≥ µitotal ≡
∑

a∈Vh ‖∇mh,a‖2ωa

‖∇mh‖
.
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Proof. Since mh ∈ V by construction, we have from (4.1)

‖∇(u− uih)‖ = sup
v∈V, ‖∇v‖=1

(∇(u− uih),∇v)

≥ 1

‖∇mh‖
(∇(u− uih),∇mh)

=
1

‖∇mh‖
∑

a∈Vh

(∇(u− uih),∇(ψamh,a))ωa

=
1

‖∇mh‖
∑

a∈Vh

{(f, ψamh,a)ωa
− (∇uih,∇(ψamh,a))ωa

}

=
1

‖∇mh‖
∑

a∈Vh

‖∇mh,a‖2ωa
,

where we have used the fact that ψamh,a ∈ H1
0 (ωa) for all vertices a ∈ Vh and

the definition of mh,a.

Remark 2. The bound µitotal can further be localized using (4.14) as

µitotal ≥

{∑
a∈Vh ‖∇mh,a‖2ωa

}1/2

(d+ 1)1/2Ccont,PF
,

where Ccont,PF ≡ maxa∈Vh Ccont,PF,ωa
. Denoting by VK the vertices of an ele-

ment K and using the fact that each simplex has (d + 1) vertices, this can be
seen from

‖∇mh‖2 =
∑

K∈Th

∥∥∥∥
∑

a∈VK
(∇(ψamh,a))|K

∥∥∥∥
2

K

≤ (d+ 1)
∑

K∈Th

∑

a∈VK
‖∇(ψamh,a)‖2K

= (d+ 1)
∑

a∈Vh

‖∇(ψamh,a)‖2ωa
≤ (d+ 1)C2

cont,PF

∑

a∈Vh

‖∇mh,a‖2ωa
.

5 Estimating the algebraic error

We will now derive upper bounds on the algebraic error with the help of the
representation of the algebraic residual rih satisfying (2.7) and of the flux re-
construction dih of Section 4.4. We will make links to the bounds of Section 3
derived purely algebraically and to the total error bounds of the previous sec-
tion. Section 5.4 recalls the lower bounds on the algebraic error of Section 3
and proposes a (function-based) construction of a lower bound analogously to
Section 4.5.

5.1 Representation of the algebraic residual

We first propose two piecewise polynomial representations of the algebraic resid-
ual rih satisfying (2.7).

The choice rih ∈ Vh = Pp(Th) ∩ H1
0 (Ω) given by (2.7) requires solving the

linear algebraic system with the global mass matrix

GCi = Ri, Gj` ≡ (ψ`, ψj), j, ` = 1, . . . , N. (5.1)
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Then rih = ΨCi = ΨG−1Ri.
Equation (5.1) represents a global problem of the same size as (2.5). In order

to avoid performing a global solve, we introduce a piecewise discontinuous poly-
nomial representation rih ∈ Pp(Th) using mutually independent local problems.
For the ease of notation, the construction below is described for the Lagrangian
basis of Vh. Denote by nj the number of mesh elements forming the support
of the basis function ψj , j = 1, . . . , N . Then, for each element K ∈ Th, define
rih|K ∈ Pp(K), rih|∂Ω = 0, such that

(rih, ψj)K = Rij/nj for ψj nonvanishing on K. (5.2)

Summing (5.2) over all elements K ∈ Th, we see that (2.7) indeed holds. De-
noting by RiK the vector on the right-hand side of (5.2) and by GK the local
mass matrix

(GK)j` ≡ (ψ`, ψj)K for ψ`, ψj nonvanishing on K,

we have
rih|K = Ψ|K(G−1

K RiK) ∀K ∈ Th.
Construction (5.2) requires solving the system of the size 1

2 (p+ 1)(p+ 2) sepa-
rately on each element K ∈ Th.

5.2 Bound using the L2 norm of the residual representa-
tion

Similarly to (4.1), using (2.9) and (4.7), the energy norm of the algebraic error
satisfies

‖∇(uh − uih)‖ = sup
vh∈Vh,‖∇vh‖=1

(∇(uh − uih),∇vh) = sup
vh∈Vh, ‖∇vh‖=1

(rih, vh)

≤ CFhΩ‖rih‖.
(5.3)

We first discuss the bound (5.3) for the representation rih constructed globally
using (5.1). The discussion shows the relationship of (5.3) to the algebraic
worst-case bounds of Section 3.1 and the role of the Friedrichs inequality con-
stant CFhΩ. In the case (5.1),

‖rih‖2 = (ΨG−1Ri,ΨG−1Ri) = (G−1Ri)TG(G−1Ri) = (Ri)TG−1Ri = ‖Ri‖2G−1 ,

and therefore

‖∇(uh − uih)‖ = ‖U − Ui‖A = ‖Ri‖A−1 ≤ CFhΩ‖Ri‖G−1 . (5.4)

An analogous estimate for the finite volume method is given in [32, Section 7.1],
where it was observed in numerical experiments that this estimate can signifi-
cantly overestimate the algebraic error. We note that

‖Ri‖2A−1 = (Ri,A−1Ri) = (G−1/2Ri,G1/2A−1G1/2G−1/2Ri)

≤ ‖G1/2A−1G1/2‖ · ‖G−1/2Ri‖2 = ‖G1/2A−1G1/2‖ · ‖Ri‖2G−1 .
(5.5)
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Because (5.4) holds also for the special choice of Ri giving the equality in (5.5)

(when G−1/2Ri is collinear with the eigenvector of G1/2A−1G1/2 corresponding
to its largest eigenvalue), we have

‖G1/2A−1G1/2‖ ≤ (CFhΩ)2. (5.6)

This means that the reciprocal of the squared Friedrichs inequality constant
(CFhΩ)−2 (and through that the related smallest eigenvalue of the continuous
operator; see, e.g., [45, Section 18]) gives a computable lower bound on the

smallest eigenvalue of the (preconditioned) matrix G−1/2AG−1/2 (cf. also [31],
[2, Section 4.2]),

1

(CFhΩ)2
≤ min
λ∈sp(G−1/2AG−1/2)

λ. (5.7)

The local construction (5.2) leads to

‖∇(uh − uih)‖ ≤ CFhΩ

( ∑

K∈Th
‖rih‖2K

)1/2

= CFhΩ

( ∑

K∈Th
‖RiK‖2G−1

K

)1/2

. (5.8)

The detailed relationship between the upper bounds (5.4) and (5.8) remains
open.

5.3 Upper bound using additional algebraic iterations

Analogously to Sections 3.2 and 4.3, we can bound the algebraic error using
ν additional iteration steps. From (2.9), (4.10), and the Green theorem, for
vh ∈ Vh,

(∇(uh − uih),∇vh) = (rih, vh) = (dih − di+νh ,∇vh) + (ri+νh , vh). (5.9)

Thus the following upper bound on the algebraic error immediately follows from
(5.3):

Theorem 3 (Upper bound on the algebraic error). Let the assumptions of
Theorem 1 be satisfied. Then

‖∇(uh − uih)‖ ≤ ηi,νalg ≡ ‖di+νh − dih‖+ CFhΩ‖ri+νh ‖.

Remark 3. The upper bound of Theorem 3 on the algebraic error allows evalua-
tion of the local indicators ηi,νalg,K ≡ ‖di+νh −dih‖K +CFhΩ‖ri+νh ‖K for the mesh
elements K ∈ Th, with subsequently using these indicators for estimating the
local distribution of the algebraic error ‖∇(uh−uih)‖K . This can indeed be very
useful in localization of the significant components of the algebraic error over
the discretization domain Ω, which represents an important problem; see [40]
and the numerical illustrations in Section 7.2.

In order to show the relationship between (5.9) and (3.2), we note that,
using (2.9),

(dih − di+νh ,∇vh) = (rih − ri+νh , vh) = (∇(ui+νh − uih),∇vh),

so that

‖Ui+ν − Ui‖A = sup
vh∈Vh, ‖∇vh‖=1

(∇(ui+νh − uih),∇vh) ≤ ‖di+νh − dih‖.
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Employing also (5.3) for i + ν in place of i, the upper bound of Theorem 3
appears weaker than the algebraic bound (3.2),

‖U − Ui‖A ≤ ‖Ui+ν − Ui‖A + ‖Ri+ν‖A−1 ≤ ‖di+νh − dih‖+ ‖Ri+ν‖A−1 .

The fluxes dih (and di+νh ) are, however, essential for bounding the total error
in Theorem 1 and, importantly, the algebraic estimator in Theorem 1 indeed
bounds the algebraic error as we see from Theorem 3.

5.4 Lower bound

As seen in Section 3.2 (see (3.3)–(3.5)), a lower bound on the algebraic error is
given by

(1− γ)‖Ui+ν − Ui‖A ≤ ‖U − Ui‖A
whenever CFhΩ‖ri+νh ‖ ≤ γ‖Ui+ν−Ui‖A with a parameter 0 < γ < 1. For the CG

method, the estimator µCG,i,ν
alg of (3.9) should be used instead. Alternatively, we

can construct (cf. [41, Theorem 5.2]) a lower bound using homogeneous Dirichlet
problems on patches ωa, a ∈ Vh, (or larger subdomains of Ω):

Theorem 4 (Lower bound on the algebraic error). Let the assumptions of
Theorem 2 be satisfied. For each vertex a ∈ Vh, let mh,a ∈ Vh ∩H1

0 (ωa) be the
solution of

(∇mh,a,∇vh)ωa
= (f, vh)ωa

− (∇uih,∇vh)ωa
∀vh ∈ Vh ∩H1

0 (ωa).

Set mh ≡
∑

a∈Vh mh,a ∈ Vh. Then

‖∇(uh − uih)‖ ≥ µialg ≡
∑

a∈Vh ‖∇mh,a‖2ωa

‖∇mh‖
.

Proof. Using (5.3) and the fact that mh ∈ Vh,

‖∇(uh − uih)‖ ≥ 1

‖∇mh‖
(∇(uh − uih),∇mh) =

∑
a∈Vh ‖∇mh,a‖2ωa

‖∇mh‖
.

6 Estimating the discretization error and con-
struction of stopping criteria

A posteriori estimation of the discretization error ‖∇(u − uh)‖ is rather com-
plicated as both u and uh are unknown. The standard approaches proposed in
literature are based on additional assumptions or properly justified heuristics
on the algebraic error. Using

‖∇(u− uih)‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − uih)‖2 (6.1)

that follows from the Galerkin orthogonality (2.4) and the results of the two
previous sections, we give upper and lower bounds on the discretization error.
We then propose global and local stopping criteria for a linear algebraic solver.
In distinction with the previous works [32, Section 6.1] or [22, Section 3.3],
the new stopping criteria guarantee that the iterations will not be stopped
prematurely.
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6.1 Lower bound

The first result follows easily from (6.1) and from the bounds of Theorems 2
and 3:

Theorem 5 (Lower bound on the discretization error). Let the assumptions of
Theorems 2 and 3 hold. Let µitotal > ηi,νalg. Then

‖∇(u− uh)‖ ≥ µi,νdiscr ≡
[(
µitotal

)2 −
(
ηi,νalg

)2
]1/2

.

In practice the assumption µitotal > ηi,νalg may not be satisfied in the iterations

where ‖∇(uh − uih)‖ ≈ ‖∇(u− uih)‖. The accuracy of the bound in Theorem 5

becomes good from the point where ηi,νalg gets small enough; see Section 7.4 for
numerical illustrations.

6.2 Upper bound

One can similarly combine the upper bound on the total error of Theorem 1 and
the lower bound on the algebraic error of Theorem 4 (note that ηi,νtotal ≥ µialg):

Theorem 6 (Upper bound on the discretization error). Let the assumptions of
Theorems 1 and 4 hold. Then

‖∇(u− uh)‖ ≤ ηi,νdiscr ≡
[(
ηi,νtotal

)2

−
(
µialg

)2
]1/2

.

When the CG method is used for solving the algebraic system (2.5), µCG,i,ν
alg of

(3.9) is suggested to be used instead of µialg above.

6.3 Stopping criteria balancing the error components

Stopping criteria for algebraic iterative solvers typically aim at stopping the
iterations when the algebraic error does not substantially contribute to the total
error. Using the (global) energy norm, it seems natural to require that

‖∇(uh − uih)‖ ≤ γalg‖∇(u− uh)‖ , (6.2a)

where γalg > 0 is a prescribed tolerance. As mentioned above, the spatial
distribution of the discretization error and of the algebraic error can be very
different from each other and the criterion (6.2a) may not be descriptive; see [40].
Therefore one may rather require that

‖∇(uh − uih)‖ωa
≤ γalg,ωa

‖∇(u− uh)‖ωa
∀a ∈ Vh. (6.2b)

The stopping criteria proposed in [32, Section 6.1] or [22, Section 3.3] re-
placed ‖∇(uh − uih)‖ and ‖∇(u− uh)‖ above by their computable estimates of

the form (in the present setting) ηi,νalg and ‖∇uih + dih‖. Such criteria seem to
work well in practice and allow to prove efficiency of the total error bound (see
also Theorem 7 below), but they do not guarantee (6.2a) and there is a danger
that the algebraic iterations can be stopped prematurely.
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Using the upper bound on the algebraic error ηi,νalg of Theorem 3 and the

lower bound on the discretization error µi,νdiscr of Theorem 5, we propose the
stopping criterion

ηi,νalg ≤ γalgµ
i,ν
discr (6.3)

that guarantees balancing the error components while implying the validity of
(6.2a). Note that (6.3) is equivalent to requesting

ηi,νalg ≤ γ̃algµ
i
total with γ̃alg ≡ γalg/(1 + γ2

alg)1/2 < 1.

Following [32, equation (6.3)] or [22, equations (3.13)–(3.15)] a local stopping
criterion that mimics (6.2b) can be set as

‖di+νh − dih‖ωa
+ CFhΩ‖ri+νh ‖ωa

≤ γ̃alg,ωa

‖∇mh,a‖ωa

Ccont,PF,ωa

∀a ∈ Vh. (6.4)

Unfortunately, the error estimator of Theorem 3 is not guaranteed to locally
bound the algebraic error from above, so that (6.2b) may not be, in general,
satisfied. Nevertheless, the criterion (6.4) is sufficient to prove the local efficiency
of the total error estimator ηi,νtotal (see Theorem 8 in Appendix A below) and it
seems to ensure the local balance of the algebraic and discretization errors; see
numerical experiments in Section 7.5.

7 Numerical illustrations
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Figure 1: Left: solution (7.1) of the peak problem. Right: solution (7.2) of the
L-shape problem.

For numerical illustration we use two test problems that were considered,
e.g., in [34, 1].

Peak problem The model problem (2.1) with the square domain Ω ≡ (0, 1)×
(0, 1) and the right-hand side f chosen so that the solution u is given by

u(x, y) = x(x− 1)y(y − 1) exp

(
−100

(
x− 1

2

)2

− 100

(
y − 117

1000

)2
)
, (7.1)

illustrated in Figure 1 (left). In the experiments, we discretize the problem
on an adaptively refined mesh with 3 463 nodes using the piecewise quadratic
polynomials. The corresponding algebraic system has 13 633 unknowns.
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L-shape problem We take Ω ≡ (−1, 1)× (−1, 1) \ [0, 1]× [−1, 0] and solve

−∆u = 0 in Ω, u = uD on ∂Ω,

where the (inhomogeneous) Dirichlet boundary condition uD is chosen so that
the solution u is in polar coordinates (r, θ) given by

u(r, θ) = r2/3 sin

(
2

3
θ

)
, (7.2)

illustrated in Figure 1 (right). The extension of our estimates to uD 6= 0 is
possible following [19]. In particular, the flux reconstruction of Section 4.4 and
the upper bound of Theorem 3 for the algebraic error remain unchanged. In the
upper bound (4.9) and in Theorem 1, an additional term corresponding to the
approximation of uD by a piecewise polynomial function is added. This term is
neglected in the experiments. We discretize the problem on an adaptively refined
mesh with 628 nodes using the piecewise cubic polynomials. The corresponding
algebraic system has here 5 098 unknowns.

The experiments are performed in Matlab R2014b with Partial Differential
Equation Toolbox. We use our implementation of arbitrary degree conforming
finite element method and of Raviart–Thomas–Nédélec spaces. We set p′ = p,
i.e., the reconstructed fluxes dih are of the same order as the FEM approximation
uih. The algebraic system (2.5) is solved using the CG method preconditioned
by the incomplete Cholesky decomposition with zero fill-in (Matlab ichol com-
mand) and starting with the zero initial guess. The exact solutions of the
algebraic systems are approximated using the build-in Matlab “backslash” di-
rect solver; in the performed numerical experiments, the algebraic error in this
approximate solution is negligible. We point out that the experiments do not
aim at the preconditioning tuned to the problem, but at demonstrating fairly
the issues that might be encountered in practical use of the presented bounds.

The initial (uniform) meshes are generated using the Matlab Delaunay tri-
angulation (initmesh command). For generating the sequence of adaptively
refined meshes we, for the reproducibility of the results, refine according to
the actual distribution of the discretization error, i.e., we compute (up to a
quadrature error that is in the given experiments negligible) the discretization
error ‖∇(u − uh)‖K on each element of the triangulation (recall that uh is for
the purpose of the experiments sufficiently accurately approximated using the
direct solution of the algebraic system). We mark the smallest subset of ele-
ments that contributes to the squared energy norm of the discretization error
by at least 25%. This requires ordering the elements according to the error size,
which is in practice usually avoided, e.g., by proceeding as in [21, Section 5.2]
or [49, pp. 10–11]. The refinement of the mesh uses the newest-vertex-bisection
algorithm implemented in the Matlab refinemesh command.

7.1 Algebraic error: the cost of the additional iterations

We first compare the cost of the upper bounds on the algebraic error of Sec-
tions 3.2 and 5.3 in terms of the number ν of the additional algebraic iterations.
For the given tolerance γrem = 1, 0.5, 0.1, we identify ν1, ν2, and ν3 as the
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Figure 2: Peak problem: PCG convergence and the values of ν1, ν2, ν3 deter-
mined by (7.3) for different choices of γrem.

smallest values satisfying

‖Ri+ν1‖A−1 ≤ γrem‖Ui+ν1 − Ui‖A, (7.3a)

‖A−1‖1/2 · ‖Ri+ν2‖ ≤ γrem‖Ui+ν2 − Ui‖A, (7.3b)

CFhΩ‖ri+ν3h ‖ ≤ γrem‖di+ν3h − dih‖, (7.3c)

for each iteration step i. The number of additional iterations ν1 of (7.3a) is
always smaller than ν2, ν3. We recall, however, that ‖Ri+ν1‖A−1 = ‖U−Ui+ν1‖A
is not available in practice. The criterion (7.3b) corresponds to the worst-case
algebraic bound for ‖Ri+ν2‖A−1 described in Section 3.1; see (3.6). For the
purpose of the present study we (tightly) approximate the norm ‖A−1‖ using
the Matlab eigs command estimating the smallest eigenvalue of A. Finally, the
criterion (7.3c) corresponds to the computable upper bound of Theorem 3 on
the algebraic error based on the flux reconstruction.

In the experiments (see Figures 2 and 3) we observe relatively large values of
ν2 and ν3, with ν2 ≤ ν3. The large value of ν3 indicates a possible nonnegligible
cost of the upper bound of Theorem 3 (and also of the upper bound of Theorem 1
on the total error). The comparison with ν1 reveals that there may be a room
for further improvements. However, as demonstrated below, for the cost of the
additional ν3 iterations, we get in our experiments upper bounds for the total
and algebraic errors with very favorable effectivity indices and, in particular, a
remarkably accurate information on the local distribution of these errors.
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Figure 3: L-shape problem: PCG convergence and the values of ν1, ν2, ν3

determined by (7.3) for different choices of γrem.

7.2 Algebraic error: effectivity indices and localization

In this section we study how far the upper bounds on the algebraic error are
from the actual error. For the ease of notation, let, corresponding to the bounds
of Sections 3.2 and 5.3,

ηi,ν1alg,1 ≡ ‖Ui+ν1 − Ui‖A + ‖Ri+ν1‖A−1 , (7.4a)

ηi,ν2alg,2 ≡ ‖Ui+ν2 − Ui‖A + ‖A−1‖1/2 · ‖Ri+ν2‖, (7.4b)

ηi,ν3alg,3 ≡ ‖di+ν3h − dih‖+ CFhΩ‖ri+ν3h ‖. (7.4c)

Here ν1, ν2, and ν3 are determined by (7.3). For these bounds, the effectivity
indices

Iieff(ηi,ν•alg,•) ≡
ηi,ν•alg,•

‖U − Ui‖A
(7.5)

are given in Figures 4–6. They confirm our expectation (see (3.4) and (3.5))
that

Iieff(ηi,ν•alg,•) ≈ 1 + γrem,

so that, for the cost of ν• additional iterations, we get the estimates with the
efficiency controlled by the parameter γrem. In Figure 5, we give additionally
the effectivity index

Iieff(µCG,i,ν
alg ) ≡

µCG,i,ν
alg

‖U − Ui‖A
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Figure 4: Effectivity indices Iieff(ηi,ν•alg,•) (7.5) of the algebraic error upper
bounds (7.4) in the peak (left) and L-shape problems (right). The values of
ν1, ν2, ν3 are determined by (7.3) with γrem = 1. Here ηi,νkalg,k is simply denoted
as ηk.
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bounds (7.4) and the effectivity index Iieff(µCG,i,ν
alg ) of the lower bound µCG,i,ν

alg

with the fixed values of ν in the peak (left) and L-shape problems (right). The
values of ν1, ν2, ν3 are determined by (7.3) with γrem = 0.5. Here ηi,νkalg,k and

µCG,i,ν
alg are simply denoted as ηk and µν , respectively.
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that illustrates the efficiency of the lower bound µCG,i,ν
alg (see (3.9)) from [50, 51],

with the values of ν fixed for the peak and the L-shape problems to ν = 5,
10 and 2, 5 respectively. We note that Iieff(µCG,i,ν

alg ) strongly depends on the
decrease of the energy norm of the algebraic error between the iteration steps
i and i + ν. With a more powerful preconditioner resulting in a faster PCG
convergence, analogous results will be achieved for much smaller number of
additional algebraic iterations.
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Figure 7: Peak problem, iteration i = 137: elementwise distribution of
the algebraic error ‖∇(uh − uih)‖K and the local algebraic error indicators
‖di+νh − dih‖K + CFhΩ‖ri+νh ‖K . The value of ν, ν = 48, is determined by (7.3c)
with γrem = 0.5.
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Figure 8: L-shape problem, iteration i = 39: elementwise distribution of
the algebraic error ‖∇(uh − uih)‖K and the local algebraic error indicators
‖di+νh − dih‖K + CFhΩ‖ri+νh ‖K . The value of ν, ν = 18, is determined by (7.3c)
with γrem = 0.5.

As discussed in Remark 3, the flux-reconstruction-based upper bound of
Theorem 3 allows evaluating the local indicators ‖di+νh − dih‖K + CFhΩ‖ri+νh ‖K
and estimating the local distribution of the algebraic error ‖∇(uh − uih)‖K . As
we can see in Figures 7 and 8, the local indicators provide a remarkably accurate
description of the local distribution of the algebraic error. We observed similarly
good results also in other iteration steps, choices of γrem = 0.1, 1, and other test
problems. Please note that the algebraic error can be localized in parts of the
discretization domain Ω where the discretization error can be small, see [40]
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and Figures 10 and 11 below. We point out that the algebraic error does not
equilibrate over the domain using the adaptive mesh refinement.

7.3 Bounding and localizing the total error
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Figure 9: Total error ‖∇(u − uih)‖, the upper bound of Theorem 1, and the
error indicators ‖∇uih + dih‖, ‖di+νh − dih‖, and CFhΩ‖ri+νh ‖ in the peak (left)
and L-shape problems (right). The value of ν is determined by (7.3c) with
γrem = 0.5.

We now illustrate the upper bound ηi,νtotal of Theorem 1. Figure 9 depicts the
total error ‖∇(u−uih)‖, the upper bound, and the error indicators ‖∇uih+dih‖,
‖di+νh −dih‖, and CFhΩ‖ri+νh ‖. We observe that ηi,νtotal tightly follows the actual
value of the error. The parameter γrem in (7.3c) is set to 0.5.
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Figure 10: Peak problem: elementwise distribution of the total error
‖∇(u− uih)‖K and the local error indicators ηosc,K + ‖di+νh − dih‖K +
CFhΩ‖ri+νh ‖K + ‖∇uih + dih‖K in the iteration i = 137 with ν = 48.

In Figures 10 and 11 we give the comparison of the local distribution of the
total error ‖∇(u−uih)‖K and the sum ηosc,K +‖di+νh −dih‖K +CFhΩ‖ri+νh ‖K +
‖∇uih + dih‖K of the local indicators. Here the iteration step i and the num-
ber ν of additional iterations are set as the smallest values determined by the
conditions (A.3a)–(A.3b) as described in Appendix A with γalg = γrem = 0.5.
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Figure 11: L-shape problem: elementwise distribution of the total er-
ror ‖∇(u− uih)‖K and the local error indicators ηosc,K + ‖di+νh − dih‖K +
CFhΩ‖ri+νh ‖K + ‖∇uih + dih‖K in the iteration i = 39 with ν = 18. We plot in
both figures the part [−0.02, 0.02]× [−0.02, 0.02] of the discretization domain Ω.

7.4 Estimating the discretization error

We illustrate the discretization error bounds of Section 6. In Figures 12 and 13
we plot these bounds together with the estimator ‖∇uih + dih‖ that we have
identified with the discretization error in Theorem 1. As in the previous ex-
periments, the number ν of additional iterations is determined by (7.3c) with
γrem = 0.5.
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Figure 12: Peak problem: the discretization error ‖∇(u − uh)‖, the estimate

‖∇uih + dih‖, the upper bound ηi,νdiscr of Theorem 6 with µCG,i,ν
alg , and the lower

bound µi,νdiscr of Theorem 5 (left); the efficiency of the estimates (right).

Estimating the discretization error via Theorems 5 and 6 is naturely in-
accurate in the iterations where the energy norm of the total error is mostly
dominated by the algebraic error; cf. upper left parts of Figures 2 and 3. When
the algebraic error drops below the discretization error, our upper and lower
bounds get close to each other and provide a tight estimate for the discretiza-
tion error.

In all performed experiments (here we present just a small sample), we have
observed that ‖∇uih+dih‖ > ‖∇(u−uh)‖, i.e., the estimate ‖∇uih+dih‖ gave an
upper bound on the actual discretization error, and this bound was tighter than
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Figure 13: L-shape problem: the discretization error ‖∇(u− uh)‖, the estimate

‖∇uih + dih‖, the upper bound ηi,νdiscr of Theorem 6 with µCG,i,ν
alg , and the lower

bound of Theorem 5 (left); the efficiency of the estimates (right).

ηi,νdiscr of Theorem 6 with µCG,i,ν
alg . Therefore the components of the total error

bound of Theorem 1 can be, in our test problems, indeed identified with the
corresponding discretization and algebraic components of the total error. Con-
sequently, the stopping criteria of [32, 22] (see also (A.3a)–(A.3b) below) seem
to behave in practice similarly to the stopping criterion (6.3) that guarantees
balancing the algebraic and the discretization error; see (6.2a).

7.5 Local stopping criteria and the spatial distribution of
errors

We finally use the L-shape problem to illustrate that the local stopping crite-
rion (6.4) prevents the algebraic error from dominating locally, as it can happen
under the global criteria; cf. the numerical experiments of [40]. We consider
the approximation u47

h determined by the global stopping criterion (6.3) with
γalg ≡ 0.5 (the value of ν = 20 is determined by (7.3c) with γrem ≡ 0.5), and
the approximation u79

h satisfying the proposed local stopping criterion (6.4) with
γ̃alg,ωa

≡ γalg,ωa
/(1+γ2

alg,ωa
)1/2, γalg,ωa

≡ γalg, ∀a ∈ Vh (the number ν = 20 of the
additional algebraic iterations is here determined by (A.8a) with γrem,K ≡ γrem,
∀K ∈ Th).

Figure 14 depicts the differences u−u47
h , u−u79

h and uh−u47
h , uh−u79

h that
visualize the total and algebraic errors respectively. We note that the algebraic
part uh − u47

h substantially affects the shape of u − u47
h in most of the domain

Ω. This is not the case for u − u79
h as |u(x) − uh(x)| ≥ 10−7 in most of the

domain Ω.

8 Conclusions and open questions

We have exposed in this paper in detail the methodology of H(div,Ω)-confor-
ming flux and H1

0 (Ω)-conforming residual reconstructions for estimating total,
algebraic, and discretization errors for finite element discretizations and itera-
tive algebraic solvers. The proposed upper and lower bounds are guaranteed and
they contain no undetermined constants. We have used them for proposing stop-
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Figure 14: L-shape problem: the difference u− u47
h counting for the total

error of the approximation u47
h determined by the global stopping criterion (6.3)

(upper left), its analogy u− u79
h for the approximation u79

h determined by the
local stopping criterion (6.4) (upper right), the algebraic part uh − u47

h (bottom
left), and its analogy uh − u79

h (bottom right). Vertical axes are scaled by 10−5,
10−5, 10−5, and 10−9, respectively.

ping criteria for algebraic solvers that balance the algebraic and discretization
errors and avoid stopping the algebraic iterations prematurely. As demonstrated
on the model problems, they can practically localize very well the distribution
of all errors and they can also avoid a possible local dominance of the algebraic
error.

One part of the cost to be paid consists in a possibly nonnegligible amount of
additional algebraic iterations that need to be performed. We have studied and
reported this cost on two model examples in a rather unfavorable setting without
a powerful preconditioner that would ensure very fast convergence and decrease
this part of the cost to minimum. We believe that the presented methodology
can be useful for many practical problems. Nevertheless, finding less costly
alternatives within the presented framework is highly desirable and it represents
one of our active research directions.

A Efficiency of the total error bound

We prove in this appendix the global and local efficiency of the upper bound of
Theorem 1, which follows and extends the results in [22, 23, 41]. To simplify
the presentation, we require that the source term f is piecewise polynomial,
f ∈ Pp′−1(Th); see Section 4.4. Consequently, we choose fh = f , and the oscil-
lation term vanishes, ηosc = 0.
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The following lemma extends [13, Theorem 3.1] and [9, p. 1191] (see also [23,
Lemma 3.12]) to the inexact algebraic solver case considered in this paper.
Recall the space H1

∗ (ωa) introduced in (4.12).

Lemma 1. Let a ∈ Vh and let ma ∈ H1
∗ (ωa) be the solution of

(∇ma,∇v)ωa
= (f, ψav)ωa

−
(
∇uih,∇(ψav)

)
ωa
−
(
rih, ψav

)
ωa

∀v ∈ H1
∗ (ωa).

(A.1)
Then there holds

‖∇ma‖ωa
≤ Ccont,PF,ωa

(
‖∇(u− uih)‖ωa

+ ‖di+νh − dih‖ωa

)
+CPF,ωa

hωa
‖ri+νh ‖ωa

.

Proof. From (A.1) and since, for v ∈ H1
∗ (ωa), ψav ∈ H1

0 (ωa), we have, employ-
ing (2.2),

(∇ma,∇v)ωa
=
(
∇(u− uih),∇(ψav)

)
ωa
−
(
rih, ψav

)
ωa
.

The Cauchy–Schwarz inequality and the bound (4.14) give
(
∇(u− uih),∇(ψav)

)
ωa
≤ ‖∇(u− uih)‖ωa

Ccont,PF,ωa
‖∇v‖ωa

.

Using (4.10), the Cauchy–Schwarz inequality, and (4.13),
(
rih, ψav

)
ωa

=
(
∇·di+νh −∇·dih + ri+νh , ψav

)
ωa

=
(
−di+νh + dih,∇(ψav)

)
ωa

+
(
ri+νh , ψav

)
ωa

≤ ‖di+νh − dih‖ωa
Ccont,PF,ωa

‖∇v‖ωa
+ ‖ri+νh ‖ωa

‖ψa‖∞,ωa
‖v‖ωa

≤ ‖di+νh − dih‖ωa
Ccont,PF,ωa

‖∇v‖ωa
+ ‖ri+νh ‖ωa

CPF,ωa
hωa
‖∇v‖ωa

.

Finally, using
‖∇ma‖ωa

= sup
v∈H1

∗(ωa),‖∇v‖=1

(∇ma,∇v)ωa

and combining the above results yields the desired bound.

The following crucial result has been shown in [9, Theorem 7] (see also [23,
Corollary 3.16]) in the two-dimensional case. The three-dimensional proof is
in [24].

Lemma 2. Let dih,a be given by (4.11) with p′ = p+ 1 and let ma be given by
(A.1). Let f ∈ Pp(Th). Then there exists a constant Cst,ωa

> 0 depending only
on the shape of elements of the patch Ta but not on their diameters such that

‖ψa∇uih + dih,a‖ωa
≤ Cst,ωa

‖∇ma‖ωa
. (A.2)

The constant Cst,ωa
is not computable. It can, however, be bounded from

above considering a finite-dimensional subspace of H1
∗ (ωa) and solving the dis-

crete version of the problem (A.1); see [23, Lemma 3.23]. Hereafter we denote

Ccont,PF ≡ max
a∈Vh

Ccont,PF,ωa
, CPF ≡ max

a∈Vh
CPF,ωa

, Cst ≡ max
a∈Vh

Cst,ωa
.

We now state the main result on the global efficiency of the estimators of
Theorem 1, both for the global stopping criteria in the sense of [32, 22] and for
the secure stopping criterion in the sense of (6.3), relying on the estimator µitotal

of Theorem 2:
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Theorem 7 (Global efficiency). Let the estimators of Theorem 1 satisfy the
global stopping criteria

CFhΩ‖ri+νh ‖ ≤ γrem‖di+νh − dih‖, (A.3a)

‖di+νh − dih‖ ≤ γalg‖∇uih + dih‖ (A.3b)

with positive parameters γrem, γalg such that

γalgCst

(
Ccont,PF + γrem

CPF maxa∈Vh hωa

CFhΩ

)
≤ 1

2(d+ 1)
. (A.4)

Alternatively, instead of (A.3)–(A.4), let

CFhΩ‖ri+νh ‖ ≤ γrem‖di+νh − dih‖, (A.5a)

‖di+νh − dih‖ ≤
γalg

(1 + γ2
alg)1/2

µitotal (A.5b)

without any requirement on γrem, γalg, supposing only

CPF maxa∈Vh hωa

CFhΩ
≤ Ccont,PF

that is typically satisfied, apart possibly the coarsest meshes. Let the assumptions
of Lemma 2 hold. Then the upper bound of Theorem 1 is globally efficient,

ηi,νtotal ≤ Cglob. eff.‖∇(u− uih)‖

with the global efficiency constant

Cglob. eff. ≡ (1 + γalg + γalgγrem)2(d+ 1)CstCcont,PF.

Recall that VK stands for the vertices of the elementK and that the functions
mh,a are specified in Theorem 2. Then the local version of Theorem 7 proving
the local efficiency under the local stopping criteria is as follows:

Theorem 8 (Local efficiency). Let, for a given element K ∈ Th, the estimators
of Theorem 1 satisfy the local stopping criteria

CFhΩ‖ri+νh ‖K′ ≤ γrem,K‖di+νh − dih‖K′ ∀K ′ ∈ Th such that K ′ ∩K 6= ∅,
(A.6a)

‖di+νh − dih‖ωa
≤ γalg,K‖∇uih + dih‖K ∀a ∈ VK (A.6b)

with positive parameters γrem,K , γalg,K such that

γalg,KCst

(
Ccont,PF + γrem,K

CPF maxa∈VK hωa

CFhΩ

)
≤ 1

2(d+ 1)
. (A.7)

Alternatively, instead of (A.6)–(A.7), let, for all a ∈ VK ,

CFhΩ‖ri+νh ‖ωa
≤ γrem,K‖di+νh − dih‖ωa

, (A.8a)

‖di+νh − dih‖ωa
≤ γalg,K

(1 + γ2
alg,K)1/2

‖∇mh,a‖ωa

Ccont,PF,ωa

, (A.8b)
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without any requirement on γrem,K , γalg,K , supposing only

CPF maxa∈VK hωa

CFhΩ
≤ Ccont,PF

that is typically satisfied, apart possibly the coarsest meshes. Let the assumptions
of Lemma 2 hold. Then we have the local efficiency of the upper bound,

‖di+νh −dih‖K +CFhΩ‖ri+νh ‖K +‖∇uih+dih‖K ≤ Cloc. eff.,K

∑

a∈VK
‖∇(u−uih)‖ωa

with the local efficiency constant

Cloc. eff.,K ≡ (1 + γalg,K + γalg,Kγrem,K)2CstCcont,PF.

Proof of Theorem 7. From the flux construction (4.11) of dih, using (A.2),

‖∇uih + dih‖2 =
∑

K∈Th

∥∥∥
∑

a∈VK
(ψa∇uih + dih,a)

∥∥∥
2

K

≤ (d+ 1)
∑

K∈Th

∑

a∈VK
‖ψa∇uih + dih,a‖2K

= (d+ 1)
∑

a∈Vh

‖ψa∇uih + dih,a‖2ωa

≤ (d+ 1)C2
st

∑

a∈Vh

‖∇ma‖2ωa
,

as any element K ∈ Th has d+ 1 vertices. From Lemma 1, we have


∑

a∈Vh

‖∇ma‖2ωa




1/2

≤


∑

a∈Vh

C2
cont,PF,ωa

‖∇(u− uih)‖2ωa




1/2

+


∑

a∈Vh

C2
cont,PF,ωa

‖di+νh − dih‖2ωa




1/2

+


∑

a∈Vh

C2
PF,ωa

(hωa
)2‖ri+νh ‖2ωa




1/2

.

Therefore, using
[∑

a∈Vh ‖z‖
2
ωa

]1/2
= (d+ 1)1/2‖z‖,

‖∇uih + dih‖ ≤ (d+ 1)CstCcont,PF‖∇(u− uih)‖
+ (d+ 1)CstCcont,PF‖di+νh − dih‖
+ (d+ 1)CstCPFmax

a∈Vh
hωa
‖ri+νh ‖.

(A.9)

From the stopping criteria (A.3),

‖∇uih + dih‖ ≤ (d+ 1)CstCcont,PF‖∇(u− uih)‖+ (d+ 1)γalgCst(
Ccont,PF + γrem

CPF maxa∈Vh hωa

CFhΩ

)
‖∇uih + dih‖,

and from (A.4),

‖∇uih + dih‖ ≤ 2(d+ 1)CstCcont,PF‖∇(u− uih)‖.
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Finally, we get the assertion for the stopping criteria (A.3),

ηi,νtotal = ‖di+νh − dih‖+ CFhΩ‖ri+νh ‖+ ‖∇uih + dih‖
≤ (1 + γalg + γalgγrem)‖∇uih + dih‖

≤ Cglob. eff.‖∇(u− uih)‖.

The efficiency under the stopping criteria (A.5) actually does not request
any restrictive assumptions of the form (A.4). Using (A.5b) and the bound of
Theorem 2,

‖di+νh − dih‖ ≤
γalg

(1 + γ2
alg)1/2

‖∇(u− uih)‖.

Now a combination with (A.9) and (A.5a) gives

‖∇uih + dih‖ ≤ (d+ 1)CstCcont,PF‖∇(u− uih)‖+ (d+ 1)
γalg

(1 + γ2
alg)1/2

Cst

(
Ccont,PF + γrem

CPF maxa∈Vh hωa

CFhΩ

)
‖∇(u− uih)‖,

so that the assertion for the stopping criteria (A.5) follows with the constant

(d+ 1)Cst

(
Ccont,PF +

γalg

(1+γ2
alg)1/2

Ccont,PF + γrem
γalg

(1+γ2
alg)1/2

CPF maxa∈Vh hωa

CFhΩ

)

≤ (1 + γalg + γalgγrem)(d+ 1)CstCcont,PF ≤
Cglob. eff.

2
.

Proof of Theorem 8. For the proof of the local efficiency, we first note that

‖∇uih + dih‖K ≤
∑

a∈VK
‖ψa∇uih + dih,a‖ωa

≤
∑

a∈VK
Cst,ωa

‖∇ma‖ωa
.

From Lemma 1,

‖∇uih + dih‖K ≤ CstCcont,PF

∑

a∈VK
‖∇(u− uih)‖ωa

+ CstCcont,PF

∑

a∈VK
‖di+νh − dih‖ωa

+ CstCPF max
a∈VK

hωa

∑

a∈VK
‖ri+νh ‖ωa

.

(A.10)

Thus, under the stopping criteria (A.6),

‖∇uih + dih‖K ≤ CstCcont,PF

∑

a∈VK
‖∇(u− uih)‖ωa

+ (d+ 1)Cstγalg,K

(
Ccont,PF + γrem,K

CPF maxa∈VK hωa

CFhΩ

)
‖∇uih + dih‖K .

From (A.7), we further obtain

‖∇uih + dih‖K ≤ 2CstCcont,PF

∑

a∈VK
‖∇(u− uih)‖ωa

,
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so that finally

‖di+νh − dih‖K + CFhΩ‖ri+νh ‖K + ‖∇uih + dih‖K
≤ (1 + γalg,K + γalg,Kγrem,K)‖∇uih + dih‖

≤ Cloc. eff.,K

∑

a∈VK
‖∇(u− uih)‖ωa

.

Let m̃a ∈ H1
∗ (ωa) be the solution of

(∇m̃a,∇v)ωa
= (f, ψav)ωa

−
(
∇uih,∇(ψav)

)
ωa

∀v ∈ H1
∗ (ωa),

in the continuous counterpart to mh,a of Theorem 2 and similarly to (A.1). The
fact that mh,a is a projection of m̃a from H1

∗ (ωa) onto W a
h gives

‖∇mh,a‖ωa
≤ ‖∇m̃a‖ωa

. Proceeding as in the proof of Lemma 1 with rih = 0,
we get the inequality ‖∇m̃a‖ωa

≤ Ccont,PF,ωa
‖∇(u− uih)‖ωa

, so that

‖∇mh,a‖ωa
≤ Ccont,PF,ωa

‖∇(u− uih)‖ωa
.

Thus, under the secure local stopping criterion (A.8b), we obtain

‖di+νh − dih‖ωa
≤ γalg,K

(1 + γ2
alg,K)1/2

‖∇(u− uih)‖ωa
,

and, employing (A.10) and (A.8a),

‖∇uih + dih‖K ≤ CstCcont,PF

∑

a∈VK
‖∇(u− uih)‖ωa

+ Cst
γalg,K

(1 + γ2
alg,K)1/2

(
Ccont,PF + γrem,K

CPF maxa∈VK hωa

CFhΩ

) ∑

a∈VK
‖∇(u− uih)‖ωa

.

The claim in this case thus follows from

Cst

(
Ccont,PF +

γalg,K

(1+γ2
alg,K)1/2

Ccont,PF + γrem,K
γalg,K

(1+γ2
alg,K)1/2

CPF maxa∈VK hωa

CFhΩ

)

≤ (1 + γalg,K + γalg,Kγrem,K)CstCcont,PF ≤
Cloc. eff.,K

2
.
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IMA J. Numer. Anal., 32 (2012), pp. 30–47.

[53] R. Verfürth, A posteriori error estimation techniques for finite element
methods, Numerical Mathematics and Scientific Computation, Oxford Uni-
versity Press, Oxford, 2013.

[54] B. I. Wohlmuth and R. H. W. Hoppe, A comparison of a posteriori
error estimators for mixed finite element discretizations by Raviart-Thomas
elements, Math. Comp., 68 (1999), pp. 1347–1378.

35

– 120 –



5.2 Further comments

The relationship between the upper bounds (5.4) and (5.8) not resolved in the
submitted text Papež et al. [2016] is shown in this section.

The evaluation of the bound (5.4)

‖U − Ui‖A ≤ CFhΩ‖Ri‖G−1

requires the solve with the global mass matrix G (see (5.1)), while for the evalu-
ation of the bound (5.8)

‖U − Ui‖A ≤ CFhΩ

(∑

K∈Th
‖RiK‖2

G−1
K

)1/2

,

only small systems with local mass matrices GK and the right-hand sides RiK have
to be solved; see (5.2). We recall that

(GK)j` = (ψ`, ψj)K for ψ`, ψj nonvanishing on K

and

RiK =
[
Rij/nj

]
for ψj nonvanishing on K,

where nj denotes the number of mesh elements forming the support of the basis
function ψj, j = 1, . . . , N . Note that the residual entry Rij is distributed equally
over the elements forming the support of ψj.

Consider an (arbitrary but fixed) ordering of the mesh elements K1, . . . , Ks.

Let G̃ ∈ RM×M , be the block diagonal symmetric positive definite matrix with
matrices GKm on its diagonal,

G̃ ≡



GK1

. . .

GKs




and denote by R̃i the vector of length M consisting of stacked vectors RiKm
,

R̃i ≡



RiK1

...
RiKs


 .

Then ∑

K∈Th
‖RiK‖2

G−1
K

= (R̃i)T G̃
−1
R̃i .

The k-th element R̃ik of the vector R̃i, k = 1, . . . ,M , is equal to Rij/nj for some in-
dex j ∈ {1, . . . , N}, and we can define the mapping Θ : {1, . . . ,M} → {1, . . . , N},
Θ(k) = j. From the definition of nj, there are nj indices k ∈ {1, . . . ,M} such
that Θ(k) = j. There holds

∑

k |Θ(k)=j

R̃ik = nj · Rij/nj = Rij,

∑

k |Θ(k)=j
g |Θ(g)=`

(G̃)kg =
s∑

m=1

(GKm)j` =
s∑

m=1

(ψ`, ψj)Km = (ψ`, ψj) = (G)j` .

– 121 –



Denote by P the matrix of size M ×N that has in each row only one non-
zero entry, which is equal to 1 and is on the position (k,Θ(k)), k = 1, . . . ,M .
Equivalently, the matrix P has in its j-th column nj non-zero entries in the rows
with indices k such that Θ(k) = j. Then

PT R̃i = Ri, PT G̃P = G.

Using

‖Ri‖2
G−1 = (Ri)TG−1Ri = (R̃i)TP(PT G̃

−1
P)−1PT R̃i,

we have

‖Ri‖2
G−1∑

K∈Th ‖RiK‖2
G−1
K

=
(R̃i)TP(PT G̃

−1
P)−1PT R̃i

(R̃i)T G̃
−1
R̃i

=
(G̃
−1/2

R̃i)T G̃
1/2

P(PT G̃
−1
P)−1PT G̃

1/2
(G̃
−1/2

R̃i)

(G̃
−1/2

R̃i)T (G̃
−1/2

R̃i)

≤ sup
V∈RM ,V 6=0

VT G̃
1/2

P(PT G̃
−1
P)−1PT G̃

1/2
V

VTV

= ‖G̃1/2
P(PT G̃

−1
P)−1PT G̃

1/2‖.

Since G̃
1/2

P(PT G̃
−1
P)−1PT G̃

1/2
is a symmetric (i.e. orthogonal) nonzero projec-

tion,

‖G̃1/2
P(PT G̃

−1
P)−1PT G̃

1/2‖ = 1,

and therefore
‖Ri‖2

G−1 ≤
∑

K∈Th
‖RiK‖2

G−1
K
.

Consequently, the bound (5.8) is weaker than the bound (5.4).
Figures 5.1 and 5.2 depict the comparison of the bounds (5.4) and (5.8) in

the test problems from the paper Papež et al. [2016]. We note that the relative
overestimation of the bound (5.8) is in these problems quite moderate; below 18%
in the peak problem and below 12% in the L-shape problem.
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6. Preconditioning as
transformation of discretization
basis functions

When solving difficult problems, an inherent part of any practical iterative solver
is an algebraic preconditioning, i.e. the transformation of the algebraic system
that aims at faster convergence behavior of the algebraic solver. As shown in
[Málek and Strakoš, 2015, Chapter 8], algebraic preconditioning in the conjugate
gradient method can be regarded as a transformation of the discretization basis
and, at the same time, transformation of the inner product in the given Hilbert
space. In this chapter we recall the results of [Málek and Strakoš, 2015, Chapter 8]
and in numerical examples we study how the transformed discretization basis
functions look like.

We also note that it has no reason to measure the quality of computed approx-
imations using the algebraic quantities (such as algebraic residual norm or the
Euclidean norm of the algebraic error) with no counterparts in the corresponding
function space. In other words, we are interested in convergence of functions, not
in convergence of their coordinates in the particular basis.

The text and the notation in the chapter is based on Málek and Strakoš
[2015], which provides the references to original results, the complete proofs, and
a thorough discussion. The numerical experiments are the result of the joint work
with Tomáš Gergelits and Zdeněk Strakoš.

6.1 Notation and setting

Consider a problem given in the weak form

to find u ∈ V : a(u, v) = 〈f, v〉 ∀v ∈ V, (6.1)

where

• V is an infinite-dimensional Hilbert space with the inner product (·, ·)V ,

• V # is the dual space consisting of linear bounded functionals on V ,

• a(·, ·) : V × V → R is a bilinear form,

• f ∈ V # is a bounded linear functional on V ,

• 〈·, ·〉 : V # × V → R is the duality pairing.

Let ‖ · ‖V ≡
√

(·, ·)V be the norm on V induced by the given inner product,
and ‖ · ‖V # the dual norm on V #,

‖f‖V # ≡ sup
v∈V ;‖v‖V =1

|〈f, v〉| .
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We further assume that the bilinear form a(·, ·) is symmetric, bounded, and
V -elliptic, i.e.

a(w, v) = a(v, w), (6.2a)

|a(w, v)| ≤ C‖w‖V ‖v‖V , (6.2b)

a(v, v) ≥ α‖v‖2
V , ∀v, w ∈ V, (6.2c)

where C > 0, α > 0. The boundedness and V -ellipticity of a(·, ·) assures the
existence and uniqueness of the solution of (6.1) for any f ∈ V # through the
Lax–Milgram lemma; see, e.g., [Málek and Strakoš, 2015, Section 3.3]. Moreover,
the solution u is continuously dependent on the right-hand side functional f ,

‖u‖V ≤
1

α
‖f‖V # ,

with the coercivity constant α ; see (6.2c). Assuming (6.2), the bilinear form
a(·, ·) is an inner product on V and it induces the energy norm

‖v‖a ≡
√
a(v, v), v ∈ V. (6.3)

Defining

A : V → V #, 〈Aw, v〉 = a(w, v) ∀v, w ∈ V,
we can rewrite (6.1) as

find u ∈ V : 〈Au, v〉 = 〈f, v〉 ∀v ∈ V,

or as the problem in the dual space V #,

Au = f, u ∈ V, f ∈ V #, (6.4)

with (6.2) assuring that the operator A is self-adjoint with respect to the duality
pairing, i.e.

〈Av, w〉 = 〈Aw, v〉 ∀v, w ∈ V,
it is bounded and (α-)coercive.

6.2 Riesz map and the operator preconditioning

The Riesz map τ : V # → V determined by the given inner product (·, ·)V provides
an isometric isomorphism between V and V #. For each f ∈ V # there exists
unique τf ∈ V such that

(τf, v)V = 〈f, v〉 ∀v ∈ V, (6.5)

which implies that

‖τf‖V = ‖f‖V # .

The existence of the Riesz map follows from the Riesz representation theorem;
see, e.g., [Ciarlet, 2013, Section 4.6].
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Given an inner product (·, ·)V , the associated Riesz map can be interpreted as
the transformation of the problem (6.4) in the dual space V #, which is indepen-
dent of the choice of the inner product on V , into the equation in the (solution)
space V ,

τAu = τf, τA : V → V, u ∈ V, τf ∈ V. (6.6)

The transformation is commonly called operator preconditioning. The opera-
tor preconditioning typically aims at providing uniform bounds on the condition
numbers of the discretized operators (and their algebraic representations) inde-
pendently on the discretization parameters; see, e.g., Hiptmair [2006] and the
discussion and references in [Málek and Strakoš, 2015, Chapters 4 and 8].

Given an element τr ∈ V , we can construct the n-th Krylov subspace for τA
and τr defined as

Kn(τA, τr) ≡ span{τr, (τA)(τr), . . . , (τA)n−1(τr)} ⊂ V . (6.7)

There exists a class of methods (called Krylov subspace methods) that use Krylov
subspaces for generating approximations to the solution u of (6.6). In the fol-
lowing section we describe the conjugate gradient method (CG) on infinite-
dimensional Hilbert space V and the matrix formulation of CG corresponding
to solving the discrete version of (6.6) on a finite-dimensional subspace Vh ⊂ V .

6.3 Conjugate gradient method in infinite- and

finite-dimensional Hilbert spaces

In many physical applications formulated as the problem (6.4) with self-adjoint,
bounded and (α-)coercive operator A, the goal is to minimize the energy norm
‖u−un‖a of the error u−un where un ∈ V is an approximation to the solution u.

Given an initial approximation u0 ∈ V and the corresponding residual
r0 ≡ f −Au0 ∈ V #, the conjugate gradient method provides in the n-th iteration
the approximation un ∈ u0 +Kn(τA, τr0) ⊂ V such that

‖u− un‖a = min
v∈u0+Kn(τA,τr0)

‖u− v‖a . (6.8)

Algorithm 1 gives the standard formulation of the conjugate gradient method in
the Hilbert space V (for the derivation, history, and references see, e.g., [Málek
and Strakoš, 2015, Section 5.1]).

Consider now a finite-dimensional subspace Vh ⊂ V and the Galerkin dis-
cretization of (6.1) on Vh

to find uh ∈ Vh : a(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh. (6.9)

Define the operator Ah : Vh → V #
h such that

〈Ahwh, vh〉 = a(wh, vh) = 〈Awh, vh〉 ∀vh, wh ∈ Vh .

By restricting the functional f to V #
h , i.e., defining

fh ∈ V #
h : 〈fh, vh〉 = 〈f, vh〉 ∀vh ∈ Vh ,
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Algorithm 1 The CG method for solving (6.4)

Given the inner product (·, ·)V and the associated Riesz map τ : V # → V ,
u0 ∈ V , r0 = f −Au0 ∈ V #, and p0 = τr0 ∈ V , compute
for n = 1, . . . , nmax do

αn−1 =
〈rn−1, τrn−1〉
〈Apn−1, pn−1〉

=
(τrn−1, τrn−1)V
(τApn−1, pn−1)V

un = un−1 + αn−1pn−1 stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉
〈rn−1, τrn−1〉

=
(τrn, τrn)V

(τrn−1, τrn−1)V

pn = τrn + βnpn−1

end for

the operator form of (6.9) reads

Ahuh = fh, uh ∈ Vh, fh ∈ V #
h . (6.10)

Let dim(Vh) = N and Φ = {φ1, . . . , φN} be a given basis of Vh. Each element
uh ∈ Vh can be represented by its coordinate vector u ∈ RN in the basis Φ,

uh = Φu .

Consider further the (canonical) dual basis Φ# = {φ#
1 , . . . , φ

#
N} of V #

h associated
with Φ, i.e.

〈φ#
i , φj〉 =

{
1, if i = j ,

0, otherwise.

Written symbolically, 〈Φ#,Φ〉 = I, where I is the identity matrix. We now show
the representation in RN of the duality pairing 〈·, ·〉, the inner product (·, ·)V ,
and the operator Ah. For any f = Φ#f ∈ V #

h and u = Φu ∈ Vh, v = Φv ∈ Vh

〈f, v〉 = 〈Φ#f ,Φv〉 = v∗f ,

(u, v)V = (Φu,Φv)V = v∗Mu, (M)ij = (φj, φi)V , (6.11)

Ahu = AhΦu = Φ#Au, (A)ij = 〈Ahφj, φi〉, i, j = 1, . . . , N.

The matrix representation of the Riesz map τ is

τΦ# = ΦM−1 .

Indeed,

v∗f = 〈f, v〉 = (τf, v)V = (τΦ#f ,Φv)V = (ΦM−1f ,Φv)V = v∗MM−1f .

The energy norm (6.3) satisfies, for v = Φv ∈ Vh,

‖v‖2
a = 〈Ahv, v〉 = 〈AhΦv,Φv〉 = v∗Av = ‖v‖2

A .
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Using the above representations, we can rewrite the (finite-dimensional) prob-
lem (6.10) as the linear algebraic system

Au = f , A ∈ RN×N , u, f ∈ RN . (6.12)

Reformulating Algorithm 1 as an algebraic representation of CG for solving (6.12)
gives a standard form of the preconditioned conjugate gradient (PCG) algorithm
with the preconditioner M given in (6.11); see Algorithm 2. The approximation
un given in the n-th step of PCG satisfies

‖u− un‖A = arg min
v∈u0+Kn(M−1A,M−1r0)

‖u− v‖A ; (6.13)

cf. (6.8). The associated Krylov subspace is given by

Kn(M−1A,M−1r0) = span{M−1r0,M
−1AM−1r0, . . . , (M

−1A)n−1(M−1r0)} ,
analogously to (6.7).

Algorithm 2 The PCG method for solving (6.12)

Given an SPD preconditioner M,
u0, r0 = f −Au0, solve Mz0 = r0, set p0 = z0, and compute
for n = 1, . . . , nmax do

αn−1 =
z∗n−1rn−1

p∗n−1Apn−1

un = un−1 + αn−1pn−1 stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

solve Mzn = rn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

end for

To sum up, the solution process using the operator preconditioning (described
via the Riesz map τ) in the conjugate gradient method can be illustrated by the
scheme

{A, f, τ} → {Ah, fh, τ} →
{
A, f ,M−1

}
→ Algorithm 2.

The state-of-the-art literature on using PCG in numerical solution of PDEs pro-
ceeds, however, in most of the cases in the following way. First, the algebraic
system Au = f is formed by some form of discretization independently of the
algebraic method that is then used for its numerical solution. Since the standard
unpreconditioned CG, i.e. Algorithm 2 with M = I, results in most of the cases in
a slow convergence of the computed approximation un to the algebraic solution u,
preconditioning of the algebraic problem is introduced to accelerate the conver-
gence behavior. Such view separates the preconditioning from the discretization
step of the solution process and can be illustrated by the scheme

{A, f} → {A, f} → construction of an preconditioner M̂→ Algorithm 2.
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6.4 Algebraic preconditioning as transformation

of the discretization basis

For a given symmetric positive definite preconditioner M̂ and its Cholesky de-
composition M̂ = L̂L̂∗, the common algebraic view on PCG (see, e.g., [Saad,
2003, Section 9.2]) consists in applying the unpreconditioned conjugate gradient
method to the transformed preconditioned system

(L̂−1A(L̂∗)−1)︸ ︷︷ ︸
At

(L̂∗u)︸ ︷︷ ︸
ut

= (L̂−1f)︸ ︷︷ ︸
f t

. (6.14)

In other words, the preconditioned conjugate gradient method (Algorithm 2) for

solving Au = f with the preconditioner M̂ is regarded1 as the unpreconditioned
conjugate gradient method (Algorithm 2 with setting M = I) for solving the
transformed system Atu

t = f t. In the following, we show the relationship between
algebraic preconditioning and transformation of the discretization basis.

First, consider the PCG with the preconditioner M as a matrix formulation of
the infinite-dimensional CG discretized with the basis Φ, i.e. M given by (6.11).
In this setting, M = I means that the discretization basis Φ is orthogonal with
respect to the given inner product (·, ·)V . This situation is certainly uncommon
and we will therefore consider a transformation (i.e. the orthogonalization) of
the discretization basis such that this condition is satisfied. Using the fact that
M = (Φ,Φ)V is the Gram matrix of the basis Φ and considering its Cholesky de-
composition M = LL∗, the orthogonalization coefficients are given in the columns
of the (upper triangular) matrix (L∗)−1; see, e.g., [Liesen and Strakoš, 2013, Sec-
tion 3.6]. Denoting the transformed basis by

Φt ≡ Φ(L∗)−1

we indeed have, writing symbolically,

(Φt,Φt)V = (Φ(L∗)−1,Φ(L∗)−1)V = L−1(Φ,Φ)V (L∗)−1 = L−1M(L∗)−1 = I.

The transformed canonical dual basis associated with Φt is

Φ#
t ≡ Φ#L.

Indeed,

〈Φ#
t ,Φt〉 = 〈Φ#L,Φ(L∗)−1〉 = L−1〈Φ#,Φ〉L = L−1I L = I.

Then

fh = Φ#f = Φ#
t L−1f = Φ#

t f t, f t = L−1f ,

uh = Φu = ΦtL
∗u = Φtu

t, ut = L∗u,

rn = Φ#rn = Φ#
t rtn, rtn = L−1rn,

pn = Φpn = Φtp
t
n, ptn = L∗pn,

un = Φun = Φtu
t
n, utn = L∗un,

1PCG allows various implementations with possibly different behavior in finite precision
computations. Discussion on finite precision behavior is, however, beyond the scope of the
thesis.
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and

τf = τΦ#f = τΦ#
t f t

= ΦM−1f = ΦtL
∗M−1Lf t = Φtf

t, Mt = I,

Ahu = AhΦu = AhΦtu
t

= Φ#Au = Φ#
t L−1A(L∗)−1ut

= Φ#
t Atu

t, At = L−1A(L∗)−1 .

Therefore, the matrix representation of Algorithm 1 obtained using the trans-
formed (orthonormal) discretization basis Φt applied to the finite-dimensional
problem (6.10) gives the unpreconditioned algebraic CG for solving the precon-
ditioned system

Atu
t = f t, i.e.

(
L−1A(L∗)−1

)
(L∗u) = L−1f .

Observation: Orthogonalization of the discretization basis in the given finite
dimensional Hilbert space is equivalent to the algebraic preconditioning of the
linear algebraic system associated with the operator preconditioning.

The condition number κ(At) = ‖At‖ ‖A−1
t ‖ of the matrix At = L−1A(L∗)−1

associated with M = LL∗ given by (6.11) satisfies (see, e.g., Hiptmair [2006],
[Málek and Strakoš, 2015, Chapter 8])

κ(At) =

(
max
v 6=0

v∗Atv

v∗v

)(
min
w 6=0

w∗Atw

w∗w

)−1

=

(
max
v 6=0

v∗L−1A(L∗)−1v

v∗L−1(LL∗)(L∗)−1v

)(
min
w 6=0

w∗L−1A(L∗)−1w

w∗L−1(LL∗)(L∗)−1w

)−1

=

(
max
ṽ 6=0

ṽ∗Aṽ

ṽ∗Mṽ

)(
min
w̃ 6=0

w̃∗Aw̃

w̃∗Mw̃

)−1

=

(
max
vh∈Vh

a(vh, vh)

(vh, vh)V

)(
min
wh∈Vh

a(wh, wh)

(wh, wh)V

)−1

≤
(

sup
v∈V

a(v, v)

(v, v)V

)(
inf
w∈V

a(w,w)

(w,w)V

)−1

(6.15)

≤ C

α
,

with the constants C, α from (6.2). This bound is independent of Vh and its
basis Φ.

In contrast to the previous development, the algebraic PCG with

M̂ = L̂L̂∗ 6= M

does not result from the discretization of the infinite-dimensional CG with the
(transformed) discretization bases

Φ̂ = Φ(L̂∗)−1, Φ̂# = Φ#L̂. (6.16)
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Since M̂ 6= M, the basis Φ̂ is not orthonormal with respect to the inner product
(·, ·)V ,

(Φ̂, Φ̂)V = (Φ(L̂∗)−1,Φ(L̂∗)−1)V = L̂−1M(L̂∗)−1 6= I .

In order to interpret the algebraic preconditioner M̂ as transformation (orthonor-

malization) of the basis Φ 7→ Φ̂ = Φ(L̂∗)−1, we have to change also the inner
product. The inner product (·, ·)Vh in Vh giving for u = Φu, v = Φv

(u, v)Vh = (u, v)V = (Φu,Φv)V = v∗Mu,

has to be replaced by the inner product (·, ·)new,Vh
defined by the SPD matrix M̂,

giving with u = Φu = Φ̂û, û = L̂∗u, and v = Φv = Φ̂v̂, v̂ = L̂∗v,

(u, v)new,Vh
= (Φ̂û, Φ̂v̂)new,Vh

≡ v̂∗û = v∗L̂L̂∗u = v∗M̂u.

Then (Φ̂, Φ̂)new,Vh
= I, and the matrix representation of the Riesz map τ̂ defined

by the transformed inner product (·, ·)new,Vh
is given by

τ̂ Φ̂# = Φ̂M̂−1
τ̂

with M̂τ̂ = I. Indeed, for f = Φ̂#f̂ , v = Φ̂v̂,

v̂∗f̂ = 〈f, v〉
= (τ̂ f, v)new,Vh

= (τ̂ Φ̂#f̂ , Φ̂v̂)new,Vh
= (Φ̂M̂−1

τ̂ f̂ , Φ̂v̂)
new,Vh

= v̂∗M̂−1
τ̂ f̂ .

Showing that

Ahu = Φ̂#Âû, Â = L̂−1A(L̂∗)−1, û = L̂∗u,

i.e. that the transformed algebraic system has the form (6.14), is analogous to
the previous case with the preconditioner M.

Observation: Algebraic PCG with arbitrary algebraic preconditioning can be
interpreted as the matrix formulation of the infinite-dimensional CG discretized
with the transformed basis Φ̂ and, at the same time, using the transformed inner
product in Vh. The transformation is such that Φ̂ is orthonormal with respect to
the transformed inner product.

6.5 Numerical illustrations

We now present simple numerical experiments to illustrate the results stated
above. For the illustrations we consider Inhomogeneous tensor problems I
and II described in Section 2.2 (see also the references therein) discretized using
the piecewise affine finite elements with the basis given by hat-functions, i.e. the
piecewise affine functions such that each one corresponds to a node of the mesh
taking there value 1 and vanishing in all others. We consider uniform meshes
consisting of isosceles right-angled elements and the adaptively refined meshes
that are generated by the adaptive procedure described in Section 2.2.
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For the considered test problems,

V ≡ H1
0 (Ω), Ω ≡ (−1, 1)× (−1, 1) , a(u, v) ≡

∫

Ω

S∇u · ∇v ,

where S = s(x)I, x ∈ Ω, is a piecewise constant positive multiple of the identity
matrix. We consider the operator preconditioner (see Sections 6.2 and 6.3)

laplace with (u, v)V ≡
∫

Ω

∇u · ∇v ,

and two algebraic preconditioners

ichol0 using the incomplete Cholesky decomposition of the stiffness matrix
with zero fill-in,

ichol(TOL) using the incomplete Cholesky decomposition with threshold
dropping, we set the threshold tolerance to 10−2 ;

see, e.g., [Saad, 2003, Chapter 10]. The ichol0 and ichol(TOL) use the Matlab

ichol command. We will use the notation M̂laplace , M̂ichol0 , and M̂ichol(TOL)

respectively.
Given a discretization basis, laplace preconditioning provides the Gram ma-

trix M̂laplace through (6.11) with the (complete) Cholesky decomposition

M̂laplace = L̂L̂∗. In contrast, in ichol0 and ichol(TOL) the lower triangular

matrix L̂ is constructed using the incomplete Cholesky decomposition of the
stiffness matrix A with M̂ given as M̂ ≡ L̂L̂∗ (in practical computations M̂ is
not assembled).

The presented experiments involve various computations, which are all subject
to numerical errors. In the illustrations below, the round-off errors in inverting
matrices, Cholesky decomposition, evaluation of norms and condition numbers
are not substantial. For the ease of exposition we will therefore identify the exact
results with their computed counterparts.

6.5.1 Convergence of PCG and conditioning of the trans-
formed algebraic problem

The goal of preconditioning is often identified with decreasing the condition num-
ber of the transformed matrix. This is misleading, unless the condition number
becomes really small, because convergence behavior of CG is not governed by the
condition number of the system matrix; see, e.g., the recent summary in Gergelits
and Strakoš [2014]. Figures 6.1 and 6.2 depict the energy norm ‖uh−un‖a of the
algebraic error of the unpreconditioned CG and PCG with the preconditioners
given above. Table 6.1 gives the condition numbers of the stiffness matrix A and
of the transformed (preconditioned) matrices At given by (6.14).

Applying the laplace preconditioning is relatively costly. In the setting con-
sidered in this chapter, each PCG iteration requires solving2 the problem with
the matrix M̂laplace that is of the same size as the stiffness matrix A. In practice,

2Using the Cholesky decomposition M̂laplace = L̂L̂∗, each iteration of PCG involves one

forward and one backward substitution with L̂ and L̂∗; see, e.g., [Saad, 2003, Algorithm 9.2].
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operator preconditioning is often implemented using an appropriate solver for the
Laplace problem, e.g., the multigrid method. As operator-based preconditioning,
laplace provides a transformed stiffness matrix with the condition number that
is bounded independently of the discretization parameters; see (6.15). In the
considered test problems with the diffusion tensor S = s(x)I, x ∈ Ω, the upper
bound reads

κ(At) ≤
(

sup
v∈V

a(v, v)

(v, v)V

)(
inf
w∈V

a(w,w)

(w,w)V

)−1

=

(
sup
v∈V

∫
Ω

S∇v · ∇v∫
Ω
∇v · ∇v

)(
inf
w∈V

∫
Ω

S∇w · ∇w∫
Ω
∇w · ∇w

)−1

≤ maxx∈Ω s(x)

minx∈Ω s(x)
,

which is equal to 5 and 1.61× 102, respectively; cf. Table 6.1. Regarding conver-
gence of PCG, the laplace preconditioner outperforms the other two considered
preconditioners in most of the iterations.

As expected, ichol(TOL) is superior to ichol0 in terms of PCG convergence
and the conditioning of the transformed system. Note that for the second test
problem discretized using the uniform mesh, ichol(TOL) provides problem with
an order of magnitude smaller condition number than laplace preconditioning.
However, the energy norm of the algebraic error decreases substantially faster for
the laplace preconditioner.

PCG iteration
0 10 20 30 40 50

10-8

10-6

10-4

10-2

100

102

none
laplace
ichol0
ichol(TOL)

PCG iteration

0 10 20 30 40 50
10-8

10-6

10-4

10-2

100

102

Figure 6.1: Inhomogeneous tensor problem I: convergence of the energy norm of
the algebraic error in PCG when the problem is discretized using the uniform
(left) and the adaptively refined mesh (right). The algebraic systems are of the
size 3969 and 3355, respectively.
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PCG iteration
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Figure 6.2: Inhomogeneous tensor problem II: convergence of the energy norm
of the algebraic error in PCG when the problem is discretized using the uniform
(left) and the adaptively refined mesh (right). The algebraic systems are of the
size 3969 and 4340, respectively.

problem: Inhomogeneous tensor I Inhomogeneous tensor II
mesh: uniform adaptive uniform adaptive
size: 3969 3355 3969 4340
none 3.34× 103 9.22× 103 6.75× 104 7.00× 104

laplace 5 5 1.61× 102 1.61× 102

ichol0 4.25× 102 1.14× 103 4.31× 102 6.59× 103

ichol(TOL) 1.69× 101 1.19× 102 1.57× 101 5.00× 102

Table 6.1: Condition number κ(At) = ‖At‖ ‖A−1
t ‖ of the preconditioned matrix

At given by (6.14) for the chosen preconditioners.
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6.5.2 Orthogonalization of the basis and ordering of the
degrees of freedom

In Section 6.4 we interpreted algebraic preconditioning as orthogonalization of
the discretization basis with respect to the inner product determined by the given
preconditioner. The properties such as the support of the resulting orthogonal
basis functions depend on the inner product and also on the order in which
the basis functions are orthogonalized. We demonstrate this in the following
experiments.

We first describe the orderings of degrees of freedom used in the numerical
illustrations. Then we discuss the effect of reordering. Finally, for the given
preconditioners, we show the sparsity patterns of their Cholesky factors and of
the upper triangular matrices that determine the associated transformation of
the discretization basis.

The effect of the ordering of the degrees of freedom on convergence of pre-
conditioned conjugate gradient method with incomplete Cholesky decomposition
was demonstrated, e.g., in the seminal paper Duff and Meurant [1989], and there
is a number of papers seeking an ordering that results in faster PCG convergence;
see, e.g., Benzi and Tůma [2000]. Consequently, techniques to reorder degrees of
freedom represent an inseparable part of implementations of the PCG.

The order, in which the functions are orthogonalized, can also affect the loss
of orthogonality in an orthogonalization process due to round-off. This was a
subject of study in so-called Ordered Gram–Schmidt orthogonalization; see, e.g.,
Štuller [1995]. However, there are very few theoretical results regarding this issue.

Orderings used in numerical illustrations

In the ordering of the degrees of freedom used in the previous subsection (and also
in the numerical experiments of Chapters 2 and 4), the new nodes constructed
in the mesh refinement steps are ordered progressively; see the illustration in
Figure 6.3. We recall that each node corresponds to one degree of freedom.

1 2 5

3 4

1 2 5

43 10

6 8 9 12

7 11

Figure 6.3: Illustration of the ordering of the nodes in the mesh refinement.

For the illustrations we use also two other orderings. Their choice is motivated
by an (expected) different sparsity of the upper triangular matrix representing
the transformation (orthogonalization) of the discretization basis in the laplace
preconditioning; see the discussion below. The same orderings are used also in
the experiments with ichol0 and ichol(TOL) preconditioners.

We consider the ordering of the nodes of the mesh such that jth node neigh-
bors with the (j − 1)st node, i.e. they share a common edge in the mesh; see

– 136 –



the illustration in Figure 6.4. Then, in laplace preconditioning, φj must be or-
thogonalized against all the basis functions φj−1, . . . , φ1 and the upper triangular

matrix (L̂∗)−1 representing the corresponding transformation (orthogonalization)
of the discretization basis (see (6.16)) is full. We will call this ordering zigzag.

1 2 6 7

3

4

10

9

5 8

Figure 6.4: Illustration of the zigzag ordering of the nodes.

The next ordering is based on a purely algebraic construction. First, the
preconditioner M̂laplace is assembled for the original ordering described in the

first paragraph. For M̂laplace we construct the permutation matrix3 P by the
symmetric approximate minimum degree permutation (Amestoy et al. [1996],
implemented in Matlab symamd command) and change the original ordering of
the degrees of freedom accordingly. The permutation aims to provide the matrix
PM̂laplaceP

T that has sparser Cholesky factor than M̂laplace . This was observed
in our numerical experiments. We also observe that the inverse of the Cholesky
factor of PM̂laplaceP

T is sparser than the inverse of the Cholesky factor of M̂laplace,
which is an expected behavior; see, e.g., Benzi and Tůma [2000]. We will call this
ordering symamd. Because of the specific algebraic construction that employs
multiple elimination steps similarly as described in detail in Liu [1985], symamd
is very close to the class of hierarchical reorderings.

Remark: When two bases Φ and ΦPT , Vh = span{Φ} = span{ΦPT}, are
used for the matrix formulation of the problem (6.10), the corresponding stiffness

matrices and laplace preconditioners are A and M̂laplace, respectively PAPT and

PM̂laplaceP
T ; see (6.11). Let M̂ichol0 and M̂ichol(TOL) denote the preconditioners

constructed in ichol0 and ichol(TOL) for A. Then, apart from special cases, the

matrices PM̂ichol0P
T and PM̂ichol(TOL)P

T differ from the ichol0 and ichol(TOL)
preconditioners constructed for PAPT .

Convergence of PCG for various orderings

We now discuss and illustrate the effect of reordering of the degrees of freedom on
convergence of PCG with the considered preconditioners. The discussion elabo-
rates on Sections 6.1 to 6.4. In the considered model problems, round-off errors

3A permutation matrix is a square matrix that has exactly one entry of 1 in each row and
each column and zeros elsewhere. Clearly, a permutation matrix P is an orthogonal matrix,
PTP = I.
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do not substantially affect convergence behavior. Therefore the discussion of ob-
served behavior does not need to consider effects of round-off errors that can
otherwise be very substantial. Results derived assuming exact arithmetic are
not, in general, descriptive for finite precision behavior of PCG; see, e.g., Green-
baum [1989], [Meurant and Strakoš, 2006, Section 5], [Liesen and Strakoš, 2013,
Section 5.9], and Gergelits and Strakoš [2014].

First, we show that (assuming exact arithmetic) reordering of the degrees
of freedom does not affect convergence of the unpreconditioned CG. For that
purpose we recall the minimization property of the CG method. The n-th step
of CG for solving Au = f with the initial vector u0 (in our experiments u0 ≡ 0)
and the corresponding residual r0 = f −Au0 provides the approximation un such
that

un = arg min
v∈u0+Kn(A,r0)

‖u− v‖A ;

see (6.13) and, e.g., [Liesen and Strakoš, 2013, Theorem 2.3.1]. Now let the
reordering of the degrees of freedom be represented by a permutation matrix P.
Then PAPT is the stiffness matrix corresponding to the reordered degrees of
freedom, Pf is the permuted right-hand side, and ũ ≡ (PAPT )−1(Pf) = Pu.
For the n-th Krylov subspace there holds,

Kn(PAPT ,Pr0) = span{Pr0, (PAPT )Pr0, . . . , (PAPT )n−1Pr0}
= span{Pr0,PAr0, . . . ,PAn−1r0}
= {Pv | v ∈ Kn(A, r0)}.

For the ease of notation, we denote

PKn(A, r0) ≡ {Pv | v ∈ Kn(A, r0)}.

A simple algebraic manipulation shows that the n-th CG approximation ũn for
solving (PAPT )ũ = Pf with the initial approximation Pu0 satisfies

ũn = arg min
v∈Pu0+Kn(PAPT ,Pr0)

‖ũ− v‖PAPT

= arg min
v∈Pu0+PKn(A,r0)

‖Pu− v‖PAPT

= arg min
v=Pw |w∈u0+Kn(A,r0)

‖Pu− v‖PAPT

= P · arg min
w∈u0+Kn(A,r0)

‖Pu−Pw‖PAPT

= P · arg min
w∈u0+Kn(A,r0)

‖u−w‖A

= Pun ,

and therefore,

‖ũ− ũn‖PAPT = ‖Pu−Pun‖PAPT = ‖u− un‖A .

The convergence of PCG with an operator-based preconditioning (i.e. the
laplace preconditioning in our illustrations) is also not affected by any reordering
of the degrees of freedom. Furthermore, it is independent of the choice of the
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discretization basis generating the given subspace Vh , which can be shown using
the finite-dimensional analogy to (6.8). Given a finite-dimensional Hilbert space
Vh and the Riesz map τ : V #

h → Vh, the CG method for solving the (finite-
dimensional) problem (6.10) with the initial approximation u0 ∈ Vh provides in
the n-th iteration the approximation un ∈ u0 +Kn(τAh, τr0) ⊂ Vh such that

‖uh − un‖a = min
v∈u0+Kn(τAh,τr0)

‖uh − v‖a .

The approximation un is uniquely determined and ‖uh− un‖a is clearly indepen-

dent of the basis of Vh. Given a basis Φ with the associated A, f , M̂laplace, u0,
the algebraic PCG in Algorithm 2 gives in the n-th iteration the coordinates un
of un with respect to Φ, un = Φun. Finally, for u = A−1f there holds uh = Φu,
and

‖uh − un‖a = ‖u− un‖A .

A reordering of the degrees of freedom, however, affects convergence of PCG
with ichol0 and ichol(TOL) preconditioners; see, e.g., Duff and Meurant [1989].
Figure 6.5 depicts convergence of PCG with ichol0 and ichol(TOL) in the test
problems for the orderings described above. We note that PCG with ichol0
converges for symamd ordering more slowly than for the other two orderings,
which was observed also in Duff and Meurant [1989].
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Figure 6.5: Convergence of the energy norm of the algebraic error in PCG for
two orderings of degrees of freedom. Convergence is independent of ordering in
unpreconditioned CG and in PCG with laplace preconditioning. For ichol0
and ichol(TOL) preconditioning the convergence differs. The solid lines with
no markers correspond to symamd ordering. The lines with dots correspond to
zigzag ordering. Left: Inhomogeneous tensor problem I on the uniform mesh.
Right: Inhomogeneous tensor problem II on the adaptively refined mesh.

In the previous discussion we focused on the effect of reordering of the degrees
of freedom on the PCG convergence, i.e., on the number of iterations that is
necessary to drop the error below a given tolerance. However, the ordering also
affects the cost of each PCG iteration, which will be illustrated in the following
experiment.
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Sparsity of the factors

Given a preconditioner M̂ = L̂L̂∗, we show the sparsity pattern of its Cholesky
factor L̂ and of the upper triangular matrix (L̂∗)−1 that provides the orthogonal-
ization coefficients and determines the transformation of the discretization basis;
see (6.16). In each figure we also show the number of nonzero elements (denoted
as “nz”). This provides an important information about the cost of matrix-vector
product and therefore also about the cost of one iteration step of PCG.

(a) Original ordering of the degrees of freedom

(b) Zigzag ordering

(c) Symamd ordering

Figure 6.6: Inhomogeneous tensor problem I, uniform mesh: sparsity pattern of
the Cholesky factor L̂ of the preconditioner. Left: laplace; middle: ichol0; right:
ichol(TOL). “nz” stands for the number of nonzero elements.
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(a) Original ordering of the degrees of freedom

(b) Zigzag ordering

(c) Symamd ordering

Figure 6.7: Inhomogeneous tensor problem I, uniform mesh: sparsity pattern of
the upper triangular matrix (L̂∗)−1 of the orthogonalization coefficients. Left:
laplace; middle: ichol0; right: ichol(TOL).
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(a) Original ordering of the degrees of freedom

(b) Zigzag ordering

(c) Symamd ordering

Figure 6.8: Inhomogeneous tensor problem II, adaptively refined mesh: sparsity
pattern of the Cholesky factor L̂ of the preconditioner. Left: laplace; middle:
ichol0; right: ichol(TOL).
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(a) Original ordering of the degrees of freedom

(b) Zigzag ordering

(c) Symamd ordering

Figure 6.9: Inhomogeneous tensor problem II, adaptively refined mesh: sparsity
pattern of the upper triangular matrix (L̂∗)−1 of the orthogonalization coefficients.
Left: laplace; middle: ichol0; right: ichol(TOL).
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Figures 6.6 to 6.9 illustrate that the sparsity pattern of the Cholesky fac-
tors L̂ as well as of the transformation matrices (L̂∗)−1 can be significantly af-
fected by the chosen ordering of the degrees of freedom. For the zigzag order-
ing, as expected from its construction, the transformation matrix in laplace
preconditioning has full upper triangle. Also the transformation matrices in
ichol0 and ichol(TOL) are denser than for the other orderings; see Figures 6.7b
and 6.9b. The symamd permutation in our experiments indeed reduces the num-
ber of nonzeros in the Cholesky factor of M̂laplace; the number of nonzeros in the

Cholesky factor of M̂ichol0 is the same for any ordering, and the Cholesky factor
of M̂ichol(TOL) is for symamd slightly denser than for the original and zigzag
orderings. However, symamd permutation significantly reduces the fill-in in the
transformation matrices for all three considered preconditioners; see Figures 6.7c
and 6.9c.

Figures 6.7 and 6.9 demonstrate that, independently of the ordering, some
columns of the transformation matrices (L̂∗)−1 for M̂laplace and M̂ichol(TOL) are
dense. In other words, laplace and ichol(TOL) preconditioners transform some
of the original locally supported hat-functions into discretization basis functions
with global support. In the following experiment we will focus on the shape of
these transformed functions.

6.5.3 Transformed discretization basis functions

We now illustrate how the transformed discretization basis functions Φ̂ = Φ(L̂∗)−1

look like for the given preconditioners. As it is unfeasible to plot the whole basis,
the following figures depict only the function φ̂N determined by the coefficients
in the last column of (L̂∗)−1. In the figures, we compare φ̂N with φ̂a,N , the last of

the basis functions Φ̂a orthogonal with respect to the inner product induced by
the bilinear form a(·, ·). This means that Φ̂a = Φ(L∗)−1, where L is the Cholesky

factor of the stiffness matrix A = (Φ,Φ)a. The functions Φ̂a are of special inter-
est; when using them for the algebraic representation of the problem (6.10), the
discrete operator Ah is represented by the identity matrix; see (6.11). A natural

question arises, to what extent φ̂N ≈ φ̂a,N .
In the figures, it is in some parts of the domain difficult to get an informa-

tion about the value of the transformed function. We therefore show also the
percentage of nonzero entries in the coefficient vector that is denoted as “fill”.
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Figure 6.10: Inhomogeneous tensor problem I, uniform mesh, symamd ordering:
the last of the transformed discretization basis functions Φ̂ = Φ(L̂∗)−1 (see (6.16))

with L̂ equal to the Cholesky factor of A (upper left), of M̂laplace (upper right),

of M̂ichol0 (bottom left), and of M̂ichol(TOL) (bottom right).
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Figure 6.11: Inhomogeneous tensor problem I, uniform mesh, zigzag ordering:
the last of the transformed discretization basis functions Φ̂ = Φ(L̂∗)−1 (see (6.16))

with L̂ equal to the Cholesky factor of A (upper left), of M̂laplace (upper right),

of M̂ichol0 (bottom left), and of M̂ichol(TOL) (bottom right).
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Figure 6.12: Inhomogeneous tensor problem II, adaptively refined mesh,
symamd ordering: the last of the transformed discretization basis functions
Φ̂ = Φ(L̂∗)−1 (see (6.16)) with L̂ equal to the Cholesky factor of A (upper left),

of M̂laplace (upper right), of M̂ichol0 (bottom left), and of M̂ichol(TOL) (bottom
right).
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Figure 6.13: Inhomogeneous tensor problem II, adaptively refined mesh, zigzag
ordering: the last of the transformed discretization basis functions Φ̂ = Φ(L̂∗)−1

(see (6.16)) with L̂ equal to the Cholesky factor of A (upper left), of M̂laplace

(upper right), of M̂ichol0 (bottom left), and of M̂ichol(TOL) (bottom right).

The transformed function given by the laplace preconditioner can differ
from φ̂a,N in the shape (this is in particular visible in the second test prob-
lem; see Figures 6.12 and 6.13) and also in the scaling; see Figures 6.11 to 6.13.
For the preconditioners based on the incomplete Cholesky decomposition of the
stiffness matrix we (mostly) observed a similar scaling of φ̂N and φ̂a,N . The effect
of dropping some coefficients in the construction of the ichol(TOL) precondi-
tioner on the shape of the associated transformed function is visible in the second
test problem; see in particular Figure 6.12. For the ichol0 preconditioner and
symamd ordering of the degrees of freedom the transformed function φ̂N has
relatively small support in both test problems; see Figures 6.10 and 6.12. In the
previous numerical examples we observed that PCG with ichol0 converges for
symamd ordering more slowly than for the other two orderings; cf. Figure 6.5.
This is in line with the small support of the transformed functions.

6.6 Comments and outlook

Efficient numerical solution of difficult problems requires applying various precon-
ditioning techniques. The point made in Málek and Strakoš [2015] and recalled
in this chapter is that preconditioning should not be considered separated from
discretization.
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The ideas linking discretization and preconditioning are certainly not new;
see [Málek and Strakoš, 2015, Section 8] for a thorough discussion and the list
of references. For example, construction of an algebraic preconditioner based on
an appropriate transformation of the original basis was used already a long time
ago, e.g., in the so-called hierarchical basis preconditioning (see, e.g., Yserentant
[1985, 1986]). However, the presented approach of Málek and Strakoš [2015] is
more general, with preconditioning considered not only as a remedy for improving
the properties of the (unpreconditioned) algebraic problem but also as an inherent
issue closely linked with discretization.

Preconditioners incorporating coarse space information (such as, e.g., mul-
tilevel preconditioners or domain decomposition techniques with coarse space
components) often prove particularly efficient. Algebraically constructed precon-
ditioners are based on approximate solution of (a part of) the problem, often
without a direct geometrical analogy. One may ask in which way these precon-
ditioners provide a global exchange of information in function spaces associated
with the underlying mathematical model. The interpretation of algebraic precon-
ditioning as transformation of the discretization basis seems suitable for answering
this question. The above numerical experiments illustrate that some of the origi-
nal basis functions with local support are in this way transformed into functions
supported over the whole discretization domain. Presented results also allow to
investigate algebraic techniques such as reordering of the degrees of freedom that
can be used in efficient algebraic preconditioning.

Further research can start from interpreting efficient algebraically constructed
preconditioners as the corresponding transformations of the discretization basis
(and of the associated inner product), and from investigating whether a sim-
ilar basis can be used directly for the discretization of the analogous infinite-
dimensional problems. Such questions might be relevant, in particular, in mas-
sively parallel computer environment.
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J. Liesen and Z. Strakoš. Krylov subspace methods: principles and analysis.
Numerical Mathematics and Scientific Computation. Oxford University Press,
Oxford, 2013. ISBN 978-0-19-965541-0.

J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimi-
nation. ACM Trans. Math. Software, 11(2):141–153, 1985. ISSN 0098-3500.

J. Málek and Z. Strakoš. Preconditioning and the conjugate gradient method in
the context of solving PDEs, volume 1 of SIAM Spotlights. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015. ISBN
978-1-611973-83-9.
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7. Conclusions

Algebraic errors in numerical solution of partial differential equations presents a
very broad topic of study. The fact that the numerical computation is, in general,
not accurate, and it is even principally desirable in many cases not to perform it to
a high accuracy, has consequences that have to be taken into account in numerical
analysis and in practical computations. In this thesis we have investigated and
illustrated some of them. We have focused on (preconditioned) iterative algebraic
solvers.

The first point of the thesis is that the algebraic error can be highly unevenly
distributed over the solution domain. It can have large local components, which
can significantly dominate the total error in some parts of the domain. This
can happen despite the fact that the energy or the L2 norm of the algebraic
error is small in comparison to the norm of the discretization error. It motivates
developing a posteriori error estimators that can provide a reliable information
not only about the global error norms but also about the local distribution of the
various types of the error (Chapter 2).

The second point concerns the backward error interpretation of the algebraic
error in the context of function approximations. Using the algebraic backward
error, a standard methodology that interprets the inaccuracies in the algebraic
solution as a modification (perturbation) of the data defining the problem, we
have linked the algebraic inaccuracies with modifications of the original model
and its discretization. This underlines importance of understanding the intercon-
nections between the phases of the solution process (such as discretization and
algebraic computation). There is much to be done (Chapter 3).

The third point concerns adaptivity and the price to be paid for increasing the
reliability and accuracy of the a posteriori error estimates. The key feature of an
efficient numerical PDE solver is adaptivity based on a posteriori error estimation.
Historically, most a posteriori analysis in numerical PDEs focuses on estimating
the discretization error. A posteriori analysis is often based on the assumption
of the exact solution of the discretized problem. This assumption is principally
restrictive. Using the so-called residual-based error estimator as an example, we
have studied the impact of abandoning the assumption of the exact algebraic
solution. In order to justify the evaluation of the estimator at the presence of the
algebraic error, the construction of the estimator has to be carefully revisited.
Then we have numerically illustrated the effect of the algebraic error on the
adaptive finite element discretizations based on the local residual-based error
indicators. The results of the experiments suggest that in practical computations
the effect of the algebraic error to adaptivity is worth to investigate. When using
inappropriate stopping criteria, the efficiency of the whole adaptive procedure
and also reaching the prescribed accuracy can be endangered (Chapter 4).

Despite the fact that there is a growing body of very substantial work avoid-
ing the unrealistic assumption on the exact solution of the algebraic problem, a
mathematically justified, inexpensive and tight estimation of the discretization
and algebraic errors that would allow for their comparison in practical computa-
tions is not, in our opinion, a fully solved problem. To provide a step towards
resolving this problem, we have shown a methodology for computing upper and
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lower bounds on the algebraic and total error norms based on the flux recon-
struction. The derived bounds allow for estimating the local distribution of the
errors over the computational domain. We have discussed bounds on the dis-
cretization error, application of the results for constructing rigorously justified
stopping criteria for iterative algebraic solvers, and the relationship to the previ-
ously published estimates on the algebraic error. The presented results indicate
the difficulties one has to cope with in rigorous approach for including algebraic
errors into a posteriori error estimates (Chapter 5).

Finally, the last point investigates the link between preconditioning and trans-
formation of the discretization bases. Efficient numerical solution of difficult prob-
lems requires applying various preconditioning techniques. We have followed the
idea that the discretization of a given mathematical model and preconditioning
of the associated algebraic system are tightly coupled. The links between the
algebraic preconditioning and the transformation of the discretization basis allow
to interpret, e.g., efficient algebraically constructed preconditioners in terms of
transformations enlarging the support of the discretization basis functions (Chap-
ter 6).

Many questions regarding the algebraic error in numerical PDEs remain wide-
ly open. We list some of them related to the topics in this thesis that are, in our
opinion, of particular importance:

• Deriving tight bounds on the errors of different origin (such as discretization
and algebraic) that allow for accurate estimating the spatial distribution of
the errors across the computational domain and that are inexpensive to
evaluate. Derivations should contain no assumptions that are impossible
to fulfill in practical computations and clearly declare all assumptions that
can restrict applicability of the results.

• Deriving mathematically justified stopping criteria that balance (in the ap-
propriate problem-dependent sense) the errors of different origin and that
avoid stopping the algebraic iterations prematurely. Heuristics that must be
used in many practical computations should admit possible gaps in rigorous
justification in order to open the door for further investigation.

• Investigating procedures that would allow to efficiently reduce the algebraic
error in some parts of the computational domain where it is indicated to be
large.
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